Prediction models for response patterns to negative energy balances in dairy cows using FTIR from milk testing data

dopfer@wisc.edu

Food Animal Production Medicine Group, School of Veterinary Medicine, University of Wisconsin-Madison WI, USA

Introduction

•Disclaimers:

•All opinions expressed are my own.

•I have no financial conflicts of interest with commercial or organizational stakeholders.

Introduction

•Early post partum responses to NEB

•5 response patterns to NEB

Need for BHBA and NEFA testing

•Prediction models for response patterns using FTIR from milk testing data

•Outlook on prediction modeling using FTIR and Machine Learning/Deep Learning

NEB ans response patterns

- NEB, metabolic challenges and
- response patterns, such as hyperketonemia,
- Negative Energy Balance early post calving
- Cows react differently to NEB with...
 - different degree of fat mobilisation
 - liver damage
 - immunosuppression
 - change in DMI
 - (late) consequences, for ex. RP, Metritis, DA's
- Response patterns to NEB -> 5 'cow types'

- 5 response patterns to NEB early post calving:
- Athlete cow
- Clever cow
- Healthy cow, but define 'healthy'...
- Hyperketonemic cow let's rethink this concept.
- PMAS cow, the 'wrong' reaction to NEB

Cow type	bBHBA	bNEFA	FEQ
Athlete cow	1	?	1
Clever cow	Ļ	?	Ļ
Healthy cow	Ļ	Ļ	Ť
Hyperketonemic cow	1	?	ţ
PMAS cow	Ļ	1	1

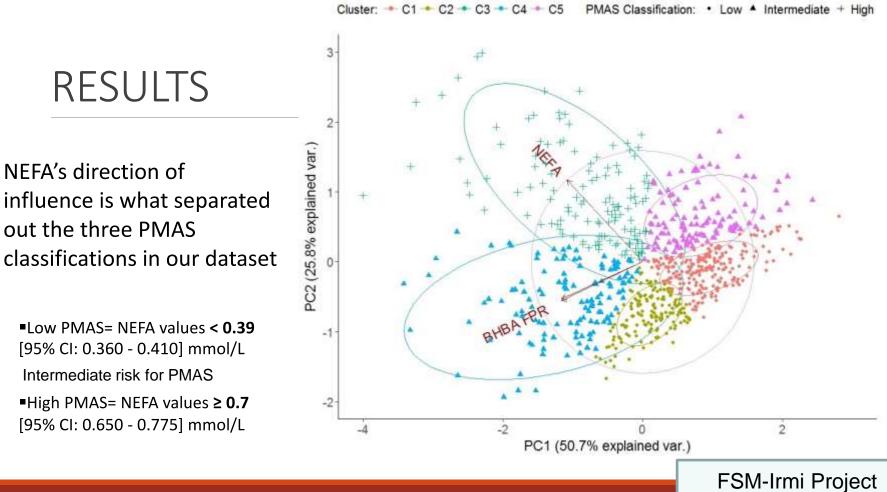
liversity

• 5 response patterns to NEB:

Cow type	bBHBA	bNEFA	FEQ	Limit values:							
Athlete cow	1	?	1	bBHBA:							
Clever cow	Ļ	?	Ļ	>0.8 mmol/L							
Healthy cow	Ļ	Ļ	1	(or >1.2 mmol/L)							
Hyperketonemic cow	1	?	Ļ	bNEFA: >0.7 mmol/L high risk							
PMAS cow	Ļ	1	1	<0.39 mmol/L low risk							
Poor Meta	abolic Ad	daptation - Pl	MAS cow:								
■Older co	w, high ı	milk producti	on,	FEQ:							
Early lac	tation>3	DIM		>1.4							
■increase	d BCS (>	3.5) during ea	rly lactatic	n							
■or extrem	nely low E	BCS (<2.5)									
Increase	Increased liver enzymes (GLDH, billirubin)										
■decrease	decreased DMI and rumen filling, fewer rumen										
NARY MEDICINE CONTRactio	ons, redu	iced milk prod	luction-> '(Crash' cow							
Tremblay e	t al., 2018	, 2019									

Where does this come from?

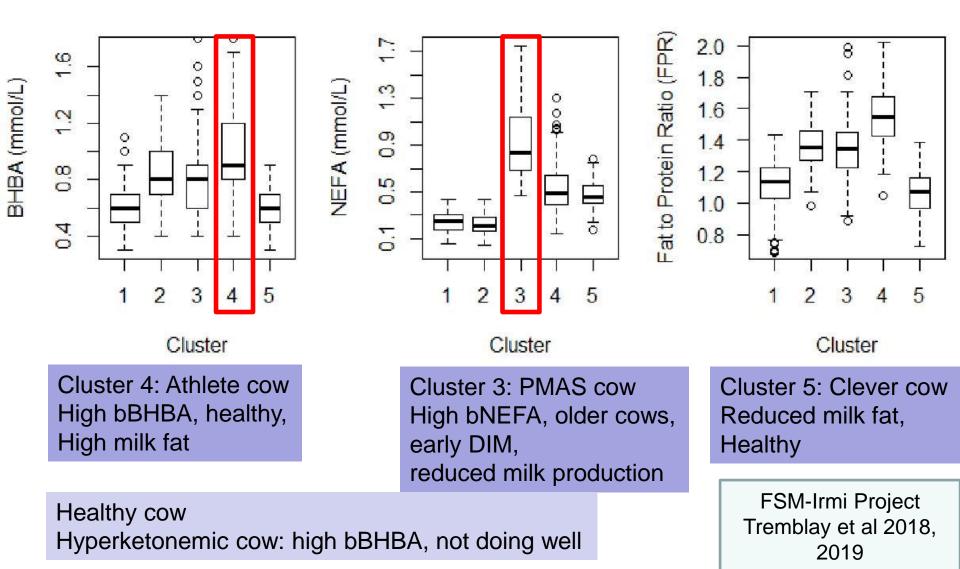
Variable	Description (units)	Mean	SD	#NA	-	
Lactation	Lactation number	3.00	1.60	0	Robot	
DIM	Days in milk	27.5	12.0	0	data	
Milk Production	Mid-24 hr milk calculated from robot (kg)	32.0	7.1	0	uala	
Milk Fat	Fat content (%)	4.16	0.83	0		
Milk Protein	Protein content (%)	3.27	0.32	0		
FPR	Milk fat protein ratio	1.28	0.25	0	Milk	
SCC	Somatic cell count (1000 cells/mL)	158.8	488.4	0	test	
Urea	Urea content (mg/dL)	23.8	8.7	0	data	
Lactose	Lactose content (%)	4.83	0.17	0		
Blood Protein	(g/L)	71.2	5.1	0		Bavaria
Albumin	(g/L)	36.5	2.8	0		were e
Bilirubin	(µmol/L)	1.21	1.08	0		visits (a
AST	Aspartate aminotransferase (U/L)	84.2	25.1	0		Physica
GGT	Gamma-glutamyl transferase (U/L)	19.8	6.1	0	- Blood	the cov
GLDH	Glutamate dehydrogenase (U/L)	12.4	11.2	0		veterin
СК	Creatine kinase (U/L)	281	452	0	test	veterm
BHBA	Beta-hydroxybutyric acid (mmol/L)	0.80	0.38	0	data	Blood a
NEFA	Non-esterified fatty acids (mmol/L)	0.45	0.35	0		were co
Cortisol	(ng/mL)	26.0	20.2	1		-700 - 1-
Rumen Contractions	Number of rumen contractions in 2 minutes	2.02	0.33	0		■790 ob
Rumen Fill ³	Diagnostic rumen fill score (TR ⁴ : 1-5)	3.08	0.68	1	Physical	cows (3
Back Fat	Back fat measured by ultrasound (mm)	12.1	3.9	15	exam	
Milk Production Reduction	Milk production reduction in one day (kg)	0.012	0.055	15	data	FSI
Change in Back Fat	Difference in back fat in one week (mm)	-0.63	2.37	260	นสเส	Trom


- + Date
- + Farm ID
- + Cow ID
- + Breed

- Bavarian AMS farms (n=26) were enrolled for weekly visits (avg. 7 wks)
- Physical examinations of the cows (5 to 50 DIM) by veterinarians
- Blood and milk samples were collected
- 790 observations from 312 cows (309 Simmental)

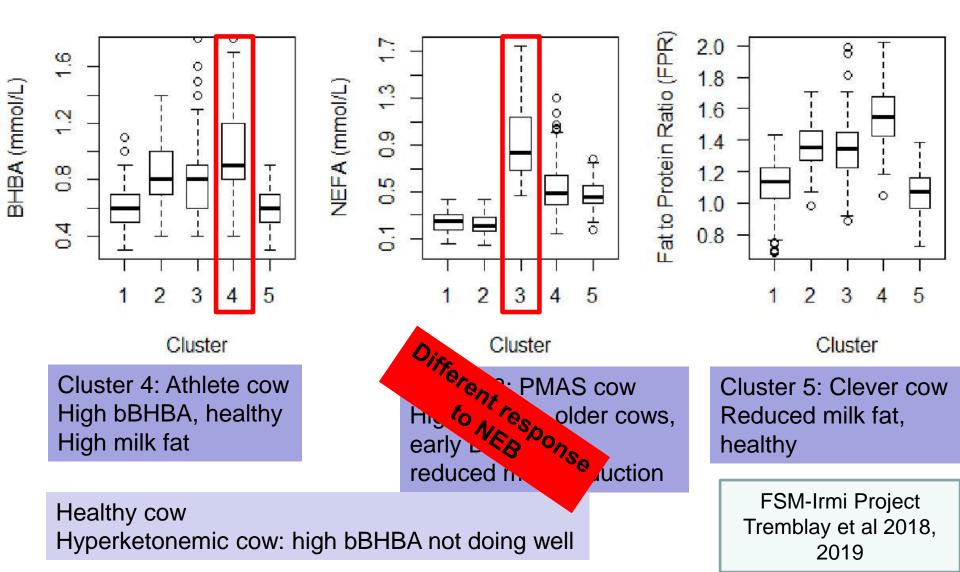
FSM-Irmi Project Tremblay et al 2018, 2019

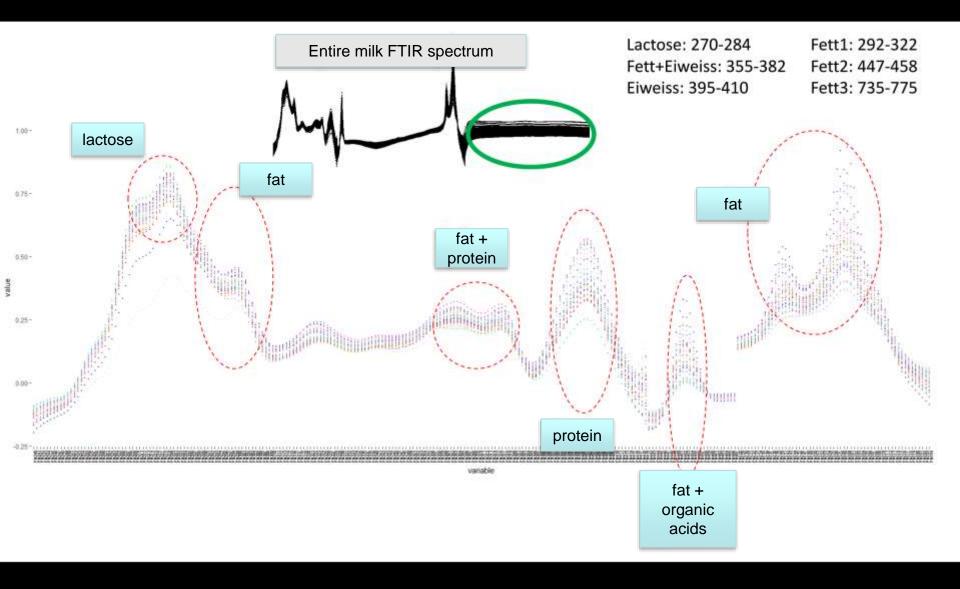
5 response patterns to NEB:



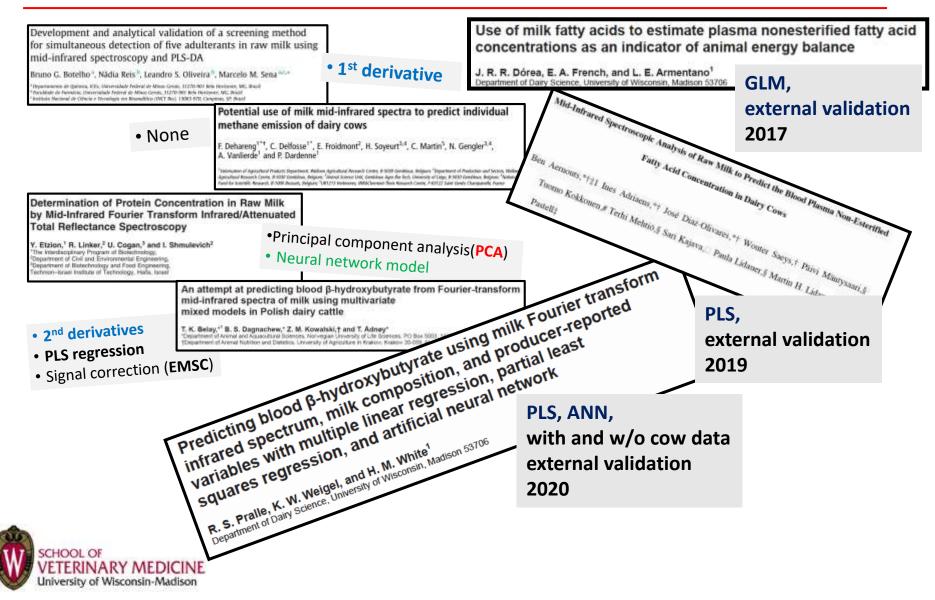
Tremblay et al 2018, 2019

Cow Types


• 5 response patterns to NEB:


Cow Types

• 5 response patterns to NEB:



FTIR spectral data to predict bBHB, bNEFA

Prediction models in literature...

Modeling choices matter...

Examples for decision criteria:

- Feature extraction
- Observation selection
- Missing data
- Transformations
- Model algorithms

: PCA, subset : Case/control **Pre-processing** : Impute or not : Scale and center See : GLM, LDA, SVM...

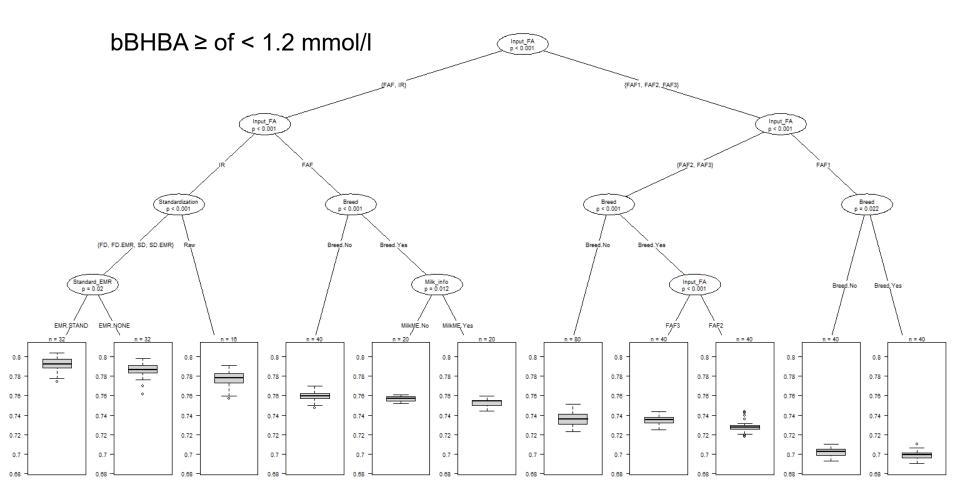
Algorithm

<u>Full</u> Model Selection (FMS)

8 steps for modeling choices: Tremblay et al 2018, 2019

For example: QCheck data

- <u>n=9960, 2641 cows, 5-50 DIM, HF and FV</u>
- Gruber et al. 2021, Milk Science International, accepted for publication
- QCheck prediction model for hi/lo bBHB
- and bNEFA uses
- Milk testing data
- **Cow data (DIM, lactation number, milk production)**
- IR spectral data from 1 instrument
- Gruber et al., accepted for publication
- JF Mandujano-Reyes 2020, under review, numeric predictions



QCheck

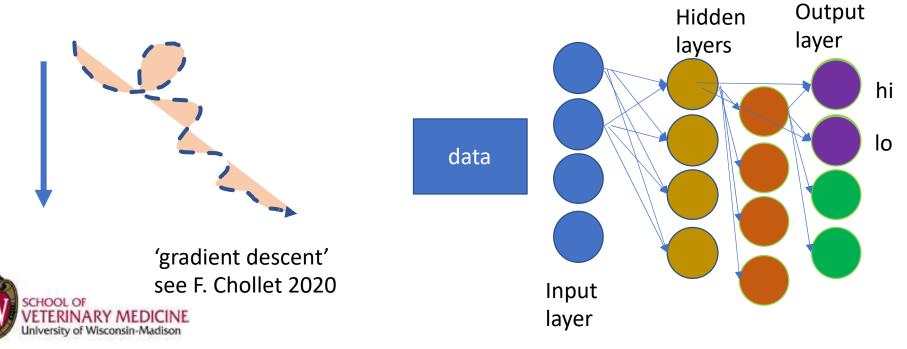
- regression tree Full Model Selection... rtFMS
- based on Tremblay et al 2019, ElasticNet algorithm

results – Q-Check to detect hi/lo bBHBA

- <u>rtFMS: bBHBA regression tree</u>
- ... Machine Learning GLMNET,
- <u>96 model variants, n=9960, 2641 cows, HF and FV</u>

<u> </u>	FAF			FA	<u>F1</u>			FA	F2			<u>F</u> A	<u>F3</u>			<u>IR</u>	<u>IR.EMR</u> standard					lized		
FAF	est	lower	upper	FAF1	est	lower	upper	FAFZ	est	lower	upper	FAF3	est	Jower	upper	3R	est	lower	upper	IR_STAN	ID est	lower	upper	
aprev	0.179	0.177	0.182	aprev	0.238	0.235	0.240	aprev	0.253	0.250	0.255	aprev	0.200	0.197	0.203	aprev	0.191	0.188	0.193	aprev	0.190	0.188	0.193	
tprev	0.063	0.061	0.064	tprev	0.063	0.061	0.064	tprev	0.062	0.061	0.064	tprev	0.062	0.061	0.064	tprev	0.063	0.061	0.064	tprev	0.063	0.061	0.064	
se	0.667	0.655	0.678	se	0.606	0.594	0.619	se	0.710	0.699	0.722	se	0.637	0.624	0.649	se	0.739	0.727	0.750) se	0.752	0.741	0.763	
sp	0.853	0.851	0.855	sp	0.787	0.784	0.790	sp	0.778	0.775	0.781	sp	0.829	0.827	0.832	sp	0.846	0.844	0.848	sp	0.847	0.845	0.850	
diag.acc	0.841	0.839	0.844	diag.acc	0.776	0.773	0.778	diag.acc	0.774	0,771	0.776	diag.acc	0.817	0.815	0.820	diag.acc	0.839	0.837	0.842	diag.acc	0,841	0.839	0.844	
bal.acc	0.760	0.753	0.767	balacc	0.697	0.689	0.704	bal.acc	0.744	0.737	0.751	bai.acc	0.733	0.725	0.740	bal.acc	0.792	0.785	0.799	bal.acc	0.800	0.793	0.806	
diag.or	11.607	10.969	12.283	diag.or	5.691	5.392	6.007	diag.or	8.584	8.097	9.101	diag.or	8.498	8,037	8.987	diag.or	15.525	14.618	16,487	dlag.or	16.872	15.871	17.936	
nnd	0.007	0.007	0.007	nnd	0.007	0.007	0.007	nnd	0.007	0.007	0.007	nnd	0.007	0.007	0.007	nnd	0.006	0.006	0.006	and	0.005	0.006	0.006	
youden	0.520	0.505	0.534	youden	0.393	0.378	0.408	youden	0.488	0.474	0.502	youden	0,466	0,451	0.480	youden	0.585	0.571	0.598	youden	0.600	0.586	0.613	
ppv	0.232	0.226	0.239	ppv	0.160	0.155	0.164	ppv	0.176	0.171	0.181	ppy	0.199	0.193	0.205	ppy	0.242	0,236	0.249	ppv	0.247	0.241	0.254	
npv	0.975	0.973	0.976	npv	0.968	0.966	0.969	npv	0.976	0.975	0.977	npv	0.972	0.970	0.973	npv	0.980	0.979	0.981	npv	0.981	0.980	0.982	
plr	4.537	4.430	4.646	pir	2.846	2.779	2.915	pir	3.197	3.132	3.263	plr	3.725	3.636	3.816	pir	4.797	4.695	4,901	pir	4.931	4.828	5.036	
nlr	0.391	0.377	0.405		0.500		0.516		0.372	0.358	0.388		0.438				0.309				0.292	0.280		
THE NO.																					FD. EMR_EMR. 5 .No_EMR212_t			
	200_pp.cs_0				TE200_pp.cs				TE200, pp. cs.				OTE200, pp. c				TE200_00, cm				10TE200, pp. c			

FAF*: fatty acid packages by FOSS, DK EMR: FTIR standardization by Grelet et al., 2015, 2016



rtFMS: s Tremblay et al 2019 QCheck project: Gruber et al., 2021, accepted for publication QCheck model: JF Mandujano Reyes et al., under revision

Machine Learning, Deep Learning

- How does is work?
- What does a Neural Network look like?
- Data for <u>Input layer</u>
- <u>Hidden layers in</u>
- densely connected convoluted neural networks (DNN)
- Output layer

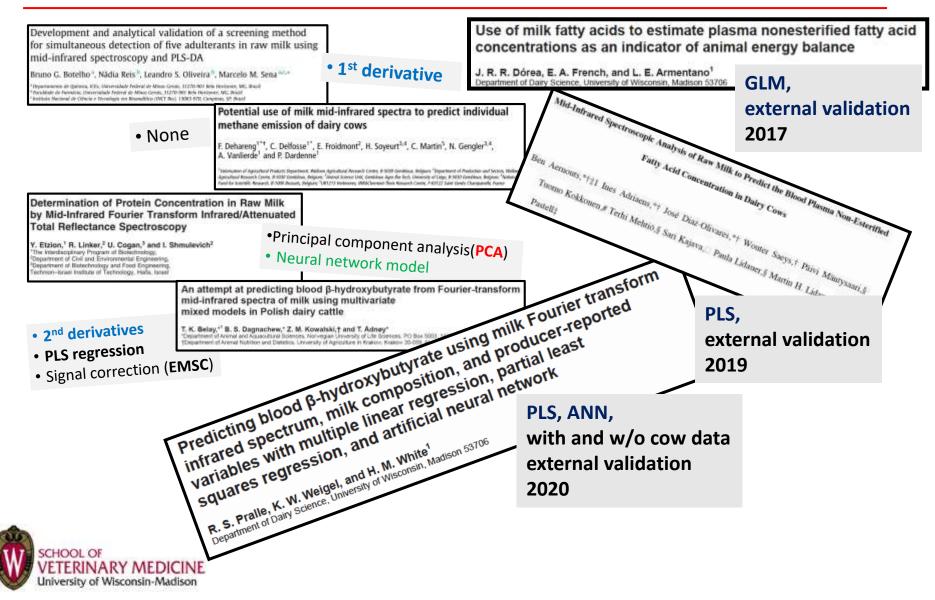
Aim: predict bBHBA hi/lo using FTIR only... a classification model and different algorithms 212 wave numbers, 2nd derivative

Qcheck Cross-validated prediction results (cv =10), n=9660													
BHB (1.2)	AUC	Accuracy	ccuracy Balanced Accuracy		Sensitivity	Specificity	PPV	NPV					
LDA	0.861 ± 0.073	0.793 ± 0.088	0.768 ± 0.074		0.743 ± 0.192	0.793 ± 0.104	0.236 <u>+</u> 0.112	0.976 ± 0.021					
ANN	0.830 ± 0.095	0.825 ± 0.074	0.745 ± 0.084		0.647 ± 0.195	0.842 ± 0.085	0.261 ± 0.122	0.963 <u>+</u> 0.035					
DNN	0.827 ± 0.106	0.833 ± 0.078	0.742 ± 0.102		0.635 ± 0.224	0.848 <u>+</u> 0.085	0.260 ± 0.107	0.963 <u>+</u> 0.035					
XGBoost	0.802	0.861	0.802 ± 0.031		0.733	0.872	0.3323	0.974					

Very similar prediction performances

Aim: predict bBHBA hi/lo using FTIR only... a classification model

•What is next?


- Stack different data sets
- Optimize prediction models
- Robustness check; external validation

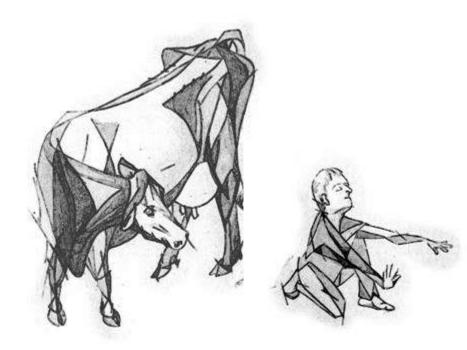
•Compare EMR standardized FTIR models to non-standardized data used for prediction models

Ensemble models

Prediction models in literature...

Conclusions

- •5 cow types in response to NEB
- Opportunities for cow- and herd-level management
- Need for bBHB and bNEFA testing
- •FTIR prediction models are useful
- Modeling choices matter
- Need for uncertainty measures for performance
- Need for prediction modeling standards and comparisons
- Need for external validation of prediction models
- •Re-visit the choice of performance parameters



Conclusions

•Why is this important?

•There is a need for interdisciplinary communication to support decision-making processes.

•Prediction models are part of this process.

Thank you!

- Q-Check, FSM-Irmi, and
- Optikuh projects
- The projects were supported by funds of the
- Federal Ministry of Food and Agriculture
- (BMEL) based on a decision of the
- Parliament of the Federal Republic of Germany
- via the Federal Office for Agriculture and Food
- (BLE) under the innovation support program.
- Thank you to the MetAlarm Project Team!
- Thank you to Martin Kammer from LKV BY!!!
- •Döpfer Team:
- •JF Mandujano Reyes, Emil Walleser, Marlene Tremblay,
- •Alec Sawalski, Kelly Anklam, Srikanth Aravamuthan,
- •Michelle Gotteiner, Moniek Smink

•dopfer@wisc.edu

⊘ Q СНЕСК

