
Interpretation of  residual feed intake by phenotypic 

recursiveness in dairy cattle: A simulation study

X.-L. Wu
1,2

, K.L.Parker Gaddis
1
, H.D. Norman

1
, J. 

Burchard
1
, E.L. Nicolazzi

1
, E.E. Connor

3
, J.B. Cole

4
& J. 

Durr
1

1 Council on Dairy Cattle Breeding, Bowie, MD 20716, USA

2 Department of  Animal Sciences, University of  Wisconsin, Madison, WI 
53706, USA

3 Department of  Animal and Food Sciences, University of  Delaware, 
Newark, DE 19716, USA

4  USDA, Animal Genomics and Improvement Laboratory, Beltsville, MD 
20705-2350, USA



Residual feed intake (RFI)

• Feed efficiency is an important trait for dairy cattle breeding and management 
because feed costs comprise a large portion of  various costs associated with dairy 
production.

• Feed efficiency is defined either as a ratio trait or as a regression (residual) trait 
(Berry and Crowley, 2013). In the past decades, residual feed intake (RFI) has 
become increasingly popular as a measure of  net feed efficiency.

• RFI was initially proposed by Koch et al. (1963) as the residuals from the regression 
of  feed intake on various energy sinks. 

• In essence, RFI represents a resource allocation theory, from which animal deviants 
can be identified, these being animals that require more or less feed than predicted 
(Herd, 2009).



Statistical models for evaluating RFI

❑ Single-trait analysis

o S1: Two-stage linear regression

o S2: One-step linear regression

❑Multiple-trait analysis

o M1: Multiple-trait, mixed-effects models (MT)

o M2: Recursive structural coefficient models (RSEM)



Single-trait, two-stage linear regression
❑ Stage #1

o A linear regression fits dry matter intake (DMI) as a linear function of  energy sink traits, 
e.g., metabolic body weight (MBW), energy-corrected milk (ECM) or milk net energy 
(MILKNE), and changes in body weight. The residual is taken to be the RFI phenotype.

𝒚1 = σ𝑗=2
𝑘 𝑏1𝑘𝒚𝑘 + 𝒓1

❑ Stage #2

o The RFI phenotype is fitted by a mixed-effects model to estimate the genetic values and 
relevant genetic parameters.

𝒓1 = 𝑿1𝜷1 + 𝒁1𝒂1 + 𝒆1

where:  𝒂1~𝑁 0, 𝑨𝜎𝑎
2



Single-trait, one-step linear regression

❑ Combining these two modeling stages leads to a one-step approach without the 
need to estimate the residuals as the RFI phenotypes (e.g., Templeman et al., 
2015).

❑ Fitting phenotypes as regressor variables in a linear regression was criticized 
because Standard regression models assume that regressor variables have been 
measured precisely or observed without error (Lu et al., 2015). In reality, 
however, phenotypes are subject to measurement errors. 

𝒚1 =෍
𝑗=2

𝑘

𝑏1𝑘𝒚𝑘 + 𝑿1𝜷1 + 𝒁1𝒂1 + 𝒆1



Multiple-trait, mixed-effects model (Two-stage)

❑ Fit a multiple-traits, mixed-effects model, and estimate variance-covariance matrices 
(Note that accurately estimating (co)variance components often require a considerably 
large dataset)

𝐆 =
𝜎𝑎1
2 𝑮1,2:𝑘

𝑮1,2:𝑘 𝑮2:𝑘
;   𝐑 =

𝜎𝑒1
2 𝑹1,2:𝑘

𝑹1,2:𝑘 𝑹2:𝑘
; 𝑽𝑝 = 𝑽𝐺 + 𝑽𝑅 =

𝜎𝑝1
2 𝑷1,2:𝑘

𝑷1,2:𝑘 𝑷2:𝑘

❑ Phenotypes or/and genetic values of  RFI are obtained by a follow-up partial linear 
regression

Partial regression coefficients for RFI phenotypes:     𝒃𝑝 = 𝑷1,2:𝑘 𝑷2:𝑘
−1 ; 

Partial regression coefficients for RFI genetic values:  𝒃𝐺 = 𝑮1,2:𝑘 𝑮2:𝑘
−1



Recursive structural equation model

❑For the i-th individual

𝚲𝐲𝑖 = 𝐗𝑖𝜷 + 𝐙𝑖𝐚 + 𝐞𝑖

𝚲 =

1 −𝜆12 ⋯ −𝜆1𝑘
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1



RSEM: Variance-covariance matrices

𝑮0 =

𝜎𝑎𝑟
2 0 … 0

0 𝜎𝑎2
2 … 𝜎𝑎2𝑘

⋮ ⋮ ⋱ ⋮
0 𝜎𝑎2𝑘 … 𝜎𝑎4

2

;

𝑹0 =

𝜎𝑒𝑟
2 0 … 0

0 𝜎𝑒2
2 … 𝜎𝑒2𝑘

⋮ ⋮ ⋱ ⋮
0 𝜎𝑒2𝑘 . . 𝜎𝑒𝑘

2

𝑮0
∗ =

𝜎𝑎𝑟
2 + Δ𝑎 𝜆12𝜎𝑎2

2 + σ𝑡≠𝑟,2
𝑘 𝜆1𝑡𝜎𝑎2𝑡 … 𝜆1𝑘𝜎𝑎𝑘

2 + σ𝑡≠𝑟,𝑘
𝑘 𝜆1𝑡𝜎𝑎𝑘𝑡

𝜆12𝜎𝑎2
2 + σ𝑡≠𝑟,2

𝑘 𝜆1𝑡𝜎𝑎2𝑡
⋮

𝜆1𝑘𝜎𝑎𝑘
2 + σ𝑡≠𝑟,𝑘

𝑘 𝜆1𝑡𝜎𝑎𝑘𝑡

𝜎𝑎2
2 … 𝜎𝑎2𝑘
⋮ ⋱ ⋮
𝜎𝑎2𝑡 … 𝜎𝑎𝑘

2

where ∆𝑥= σ𝑡′=2
𝑘 𝜆1𝑡′

2 𝜎𝑥𝑡′
2 + σ𝑡′=2

𝑘 𝜆1𝑡′σ𝑡≠1,𝑡′
𝑘 𝜆1𝑡𝜎𝑥𝑡𝑡′ , for 𝑥 = 𝑎 and e. 

𝑮0
∗= 𝜦−1𝑮0𝜦

′−1

𝑅0
∗= 𝜦−1𝑅0𝜦

′−1

𝑅0
∗ =

𝜎𝑒𝑟
2 + Δ𝑒 𝜆12𝜎𝑒2

2 + σ𝑡≠𝑟,2
𝑘 𝜆1𝑡𝜎𝑒2𝑡 … 𝜆1𝑘𝜎𝑒𝑘

2 + σ𝑡≠𝑟,𝑘
𝑘 𝜆1𝑡𝜎𝑒𝑘𝑡

𝜆12𝜎𝑒2
2 + σ𝑡≠𝑟,2

𝑘 𝜆1𝑡𝜎𝑒2𝑡
⋮

𝜆1𝑘𝜎𝑒𝑘
2 + σ𝑡≠𝑟,𝑘

𝑘 𝜆1𝑡𝜎𝑒𝑘𝑡

𝜎𝑒2
2 … 𝜎𝑒2𝑘
⋮ ⋱ ⋮
𝜎𝑒2𝑡 … 𝜎𝑒𝑘

2

RFI DMI



Conditional posterior distribution: structural coefficients

𝝀|𝑒𝑙𝑠𝑒~𝑀𝑉𝑁 𝝁𝜆, 𝑽𝜆

where: 𝑽𝜆 = 𝜎𝑒1
2 ×

෍
𝑖=1

𝑛

𝑦𝑖2
2 + 𝜎𝑒1

2 𝜏−2

෍
𝑖=1

𝑛

𝑦𝑖3𝑦𝑖2

⋮

෍
𝑖=1

𝑛

𝑦𝑖𝑘𝑦𝑖2

෍
𝑖=1

𝑛

𝑦𝑖2𝑦𝑖3

෍
𝑖=1

𝑛

𝑦𝑖3
2 + 𝜎𝑒1

2 𝜏−2

⋮

෍
𝑖=1

𝑛

𝑦𝑖𝑘𝑦𝑖3

⋯
⋯
⋱
⋯

෍
𝑖=1

𝑛

𝑦𝑖2𝑦𝑖𝑘

෍
𝑖=1

𝑛

𝑦𝑖3𝑦𝑖𝑘

⋮

෍
𝑖=1

𝑛

𝑦𝑖𝑘
2 + 𝜎𝑒1

2 𝜏−2

−1

𝝁𝜆 = 𝜎𝑒1
−2 × 𝑽𝜆 ×

෍
𝑖=1

𝑛

𝑦𝑖2𝑤𝑖1 + 𝜎𝑒1
2 𝜏−2𝜆0

෍
𝑖=1

𝑛

𝑦𝑖3𝑤𝑖1 + 𝜎𝑒1
2 𝜏−2𝜆0

⋱

෍
𝑖=1

𝑛

𝑦𝑖𝑘𝑤𝑖1 + 𝜎𝑒1
2 𝜏−2𝜆0



The simplified algorithm

• A standard multiple-trait mixed-effects model analysis of  energy sink traits, independent of  

the computed RFI phenotypes. This step can be implemented by Markov chain Monte 

Carlo, or simply by REML.

• Markov chain Monte Carlo sampling for the structural coefficients and model parameters 

for RFI. 

• The variance-covariance components between DMI and energy sinks are based on the 

following relationships: 

𝐆0
∗ = 𝚲−1𝑮0𝚲

,−1; 𝐑0
∗ = 𝚲−1𝐑0𝚲

,−1

where 𝑮0 =
𝜎𝑎𝑟
2 𝟎′

𝟎 𝐆−𝑟
, 𝐑0 =

𝜎𝑒𝑟
2 𝟎′

𝟎 𝐑−𝑟
. 



Simulation parameters

𝒂1
𝒂2
𝒂3
𝒂4

~MVN 𝟎, 𝐆⊗ 𝑨 ;

𝑒1
𝒆2
𝒆3
𝒆4

~MVN 𝟎, 𝐑⊗ 𝐈𝝁 = 𝟎;

𝒚1
𝒚2
𝒚3
𝒚4

= 𝝁 +

𝒂1
𝒂2
𝒂3
𝒂4

+ 

𝒆1
𝒆2
𝒆3
𝒆4

𝐷𝑀𝐼
𝑀𝐵𝑊
𝐸𝐶𝑀
Δ𝐵𝑊

G=

0.399
0.205
0.191
0.012

0.205
0.524
0.033
0.037

0.191
0.033
0.287
−0.005

0.012
0.037
−0.005
0.048

; R=

0.584
0.236
0.311
0.179

0.236
0.534
0.142
0.144

0.311
0.142
0.674
−0.022

0.179
0.144
−0.022
0.96



Structural coefficients/patrial regression

LR = single-trait linear regression;  RSEM = Structural equation model;  MT = multiple-traits, mixed effects model

COVP = partial regression coefficients from the MT model based on phenotypic variance-covariances; 

COVG = partial regression coefficients from the MT model based on genetic variance-covariances.

Energy 

sink

Two-stage LR One-step LR RSEM MT

Mean SD Mean SD Posterior 

mean

Posterior 

SD
COVP COVG COVE

MBW 0.327 0.026 0.313 0.027 0.312 0.027 0.327 0.349 0.300

ECM 0.498 0.027 0.470 0.027 0.469 0.027 0.498 0.629 0.404

dLW 0.127 0.026 0.137 0.025 0.137 0.025 0.127 0.049 0.151



Two-stage LR, one-step LR, and RSEM
• The recursive model was equivalent to single-trait linear regression concerning the 

estimated RFI genetic values, but the recursive model has expanded the analytical 

capability to multiple traits with phenotypic relationships assumed.

𝑦 = −0.008 + 1.025𝑥 𝑦 = −0.001 + 1.120𝑥



Two-stage LR, one-step LR, and MT

𝑦 = −0.009 + 1.015𝑥 𝑦 = −0.001 + 0.987𝑥



RSEM vs. MT model
• RSEM captures phenotypic recursive effects whereas the MT model derives the partial 

regression coefficients for RFI genetic values based on genetic variance-covariances only.

• These results were no indication of  which model was more accurate because the true 
RFI genetic values were unknown, and because the simulation results were subject to the 
underlying assumptions, whether it favors one model or the other. 

𝑦 = −0.001 + 1.127𝑥



Conclusions

❑ We proposed a Bayesian structural equation model as a flexible, one-step, direct method for 
the genetic evaluation of  RFI. A simplified algorithm is proposed, which facilitates dealing 
with large datasets in real applications.

❑ The recursive model was equivalent to single-trait linear regression concerning the 
estimated RFI genetic values, but the recursive model has expanded the analytical capability 
to multiple traits with phenotypic relationships assumed.

❑ The recursive model extends naturally to deal with heterogenous recursiveness that varied 
with subpopulations or varied genetic and residual relationships within the same population. 
Extending the recursive model to genomic prediction is straightforward too, which can be 
accomplished by replacing the additive genetic relationship matrix with a genomic 
relationship matrix. 


