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Residual feed intake (RFI)

Feed efficiency is an 1rnportant trait for da1ry cattle breeding and management
because feed costs comprise a large portion of various costs associated with dairy
production.

Feed etficiency is defined either as a ratio trait or as a regression (residual) trait
(Berry and Crowley, 2013). In the past decades, residual feed intake (RFI) has

become increasingly popular as a measure of net feed efficiency.

RFI was initially proposed by Koch et al. (1963) as the residuals from the regression
of feed intake on various energy sinks.

In essence, RFI represents a resource allocation theory, from which animal deviants
can be identified, these being animals that require more or less feed than predicted

(Herd, 2009).




Statistical models for evaluating RFI

J Single-trait analysis
O S1: Two-stage linear regression
O S2: One-step linear regression
J Multiple-trait analysis
O M1: Multiple-trait, mixed-effects models (MT)

O M2: Recursive structural coefficient models (RSEM)




Single-trait, two-stage linear regression

) Stage #1

O A linear regression fits dry matter intake (DMI) as a linear function of energy sink traits,
e.g., metabolic body weight (MBW), energy-corrected milk (ECM) or milk net energy
(MILKNE), and changes in body weight. The residual is taken to be the RFI phenotype.

Y1 = Z?:z biryr + 11
) Stage #2

O The RFI phenotype is fitted by a mixed-effects model to estimate the genetic values and
relevant genetic parameters.

ri = Xlﬂl + Zlal + €1
where: a;~N(0,Ac?)




Single-trait, one-step linear regression

Combining these two modeling stages leads to a one-step approach without the

need to estimate the residuals as the RFI phenotypes (e.g., Templeman et al.,
2015):
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Fitting phenotypes as regressor variables in a linear regression was criticized

because Standard regression models assume that regressor variables have been

measured precisely or observed without error (Lu et al., 2015). In reality,
however, phenotypes are subject to measurement errors.




Multiple-trait, mixed-effects model (Two-stage)

! Fita multiple-traits, mixed-effects model, and estimate variance-covariance matrices
(Note that accurately estimating (co)variance components often require a considerably
large dataset)

G = ( 06%1 Gl,Z:k); R = ( 0-621 R1,2:k >; Vp — VG + VR — ( 0-131 P1,2:k)
Gl,2:k GZ:k R1,2:k RZ:k P1,2:k P2:k

) Phenotypes or/and genetic values of RFI are obtained by a follow-up partial linear
regression

Partial regression coefficients for REFI phenotypes: by, = Py 5. P ks

Partial regression coefficients for RFI genetic values: bg = Gq 2. G,k




Recursive structural equation model

- For the 1-th individual
AYi — Xlﬁ —+ Zl-a —+ €

e Y o Y

MBW ECM 2[ 3 e;3 4 e,
> ez K7 R/ %/
Bivil MBW ECM ALW

i » P S 98

Stage-two model DMI




RSEM: Variance-covariance matrices

RFI DMI
GB= A_lGoA,_l

2 2 2 k 2 k
Oa, 0 0 Oq, S Aa 112%2 3 Ztir,z Alto-azt Alko-ak 3 Ztir,k Alto-akt
2
2 4 2
GO = 0 aaz Gazk : GB = /1120a2 + Ztir,Z Alto-azt Uaz Uazk
s :
2 k 2
0 Ta,k Oa, Alko-ak + Ztir,k Alto-akt Oaye Oay

Ri= A"1RyA'™1

2 2 2 k 2 k
Oe, 0 0 Oe, s Ae 312%2 35 Ztir,z Alto-ezt Alko-ek 5 Ztir,k Alto-ekt
2 2 k 2
R 0 05 o Oey R, = A205, + Dizr2 MeOe,, Oe, O,
2 2 4k 2
0 Gy rtiezs Oey Alko-ek i Ztir,k Alto-ekt Oe,e Oey,

_ vk 2 2 k k ol




® ®

Conditional posterior distribution: structural coetficients

Alelse~MVN(u;, V)
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The simplified algorithm

* A standard multiple-trait mixed-effects model analysis of energy sink traits, independent of

the computed RFI phenotypes. This step can be implemented by Markov chain Monte
Catlo, or simply by REML.

* Markov chain Monte Carlo sampling for the structural coefficients and model parameters
for RFI.

* The variance-covariance components between DMI and energy sinks are based on the
following relationships:

GS = A—160A,—1; R* = A_lRoA'_l

2 OI 2 OI
where Gy = (O-(C)lr G ), Ry = (0-5’” R )
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Structural coefficients/patrial regression

Energy  Two-stage LR One-step LR RSEM MT
sink . :
Mean SD  Mean SD Posterior  Postetior  COVP COVG COVE
mean SD
MBW 0.327 0.026 0.313 0.027 0.312 0.027 0.327 0.349 0.300
ECM 0.498 0.027 0.470 0.027 0.469 0.027 0.498 0.629 0.404
dL\W 0.127 0.026 0.137 0.025 0.137 0.025 0.127 0.049 0.151

LR = single-trait linear regression; RSEM = Structural equation model; MT = multiple-traits, mixed effects model

COVP = partial regression coefficients from the M'T model based on phenotypic variance-covariances;
COVG = partial regression coefficients from the M'T model based on genetic variance-covariances.




RFI genetic values from one-step LR

Two-stage LR, one-step LR, and RSEM

The recursive model was equivalent to single-trait linear regression concerning the
estimated RFI genetic values, but the recursive model has expanded the analytical
capability to multiple traits with phenotypic relationships assumed.
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Two-stage LR, one-step LR, and MT

Spearman's correlation = 0.998 Spearman's correlation = 0.996
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RSEM vs. MT model

* RSEM captures phenotypic recursive effects whereas the MT model detives the partial
regression coefficients for RFI genetic values based on genetic variance-covariances only.

* These results were no indication of which model was more accurate because the true
RFI genetic values were unknown, and because the simulation results were subject to the
underlying assumptions, whether it favors one model or the other.
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Conclusions

We proposed a Bayesian structural equation model as a flexible, one-step, direct method for
the genetic evaluation of RFI. A simplified algorithm is proposed which facilitates dealing
with large datasets in real applications.

The recursive model was equivalent to smgle trait linear regression concerning the
estimated RFI genetlc values, but the recursive model has expanded the analytical capability
to multiple traits with phenotypm relationships assumed.

The recursive model extends naturally to deal with heterogenous recursiveness that varied
with subpopulations or varied genetic and residual relationships within the same population.
Extending the recursive model to genomic prediction is straightforward too, which can be
accomplished by replacing the additive genetic relationship matrix with a genomic
relationship matrix.




