

ENHANCING METABOLIC MONITORING DURING EARLY LACTATION USING NEFA IN BLOOD AS ADDITIONAL REFERENCE INDICATOR

2021-04-27 | ICAR 2021 | M. Kammer, M. Tremblay, D. Döpfer, S. Plattner, S. Gruber, R. Mansfeld, S. Hachenberg, C. Baumgartner, J. Duda

Introduction

- Hightest metabolic stress for cows occurs during early lactation
- Fat-protein-ratio in milk is important, but has limits
- Analytic standard for detection of hyperketonemia: Concentration of betahydroxybutyric acid (BHBA) in blood
- Indicator for fat mobilization: Concentration of non-esterified fatty acids (NEFA) in blood
- Higher concentrations of NEFA in blood are associated with health problems in cows as shown in a paper by Tremblay et al. 2018. J. Dairy Sci. 101 (8): 7311–7321

Dataset and prediction models

- Available datasets consist of milk sample analysis data with MIR FTIR spectra and blood samples collected between 5 and 50 days in milk
- Models use a traffic light system with two different references:

Concentration of NEFA in blood	Concentration of BHBA in blood and fat-protein-ratio (FPR)
Indicator for dangerous metabolic stress Early warning message	Indicator for risk of hyperketonemia Alert message
Cutoff-Values: Low Risk (NEFA < 0.39 mmol/l) Medium Risk (NEFA ≥ 0.39 mmol/l and < 0.7 mmol/l) High Risk (NEFA ≥ 0.7 mmol/l)	Cutoff-Values: Low Risk (BHBA < 1.2 mmol/l, FPR < 1.5) Medium Risk (BHBA ≥ 1.2 mmol/l or FPR ≥ 1.5) High Risk (BHBA ≥ 1.2 mmol/l and FPR ≥ 1.5)

- Linear Discriminant Analysis used as model algorithm
- Models use milk FTIR spectra, lactation number, day in milk and milk yield

Update of dataset and prediction models

- Models used since 2018 in a test phase, since 2019 routinely integrated in standard performance recording reports for farmers
- Predicted class decided using the posterior probability to belong to the Low Risk class with probability thresholds
- Original calibration dataset contained only dual-purpose Simmental cows (predominant breed in Bavaria)
- New data available for Holstein and Brown Swiss from Q Check and Bavarian follow up projects were combined with initial dataset

Initial dataset

• Farms: 26

• Animals: 381

• Samples: 1038

New models and evaluation!

New dataset

■ Farms: 103

• Animals: 4058

Samples: 16923

Criteria for evaluation

- Important for the farmer: Accuracy of the status messages percentage of correct status messages
- Limitation: Dependence on prevalence the percentage of the reference classes in the calibration datasets
- Benchmark percentages:
 Percentage of correct green status messages = reference and prediction green -> Higher values are better
 Minimize percentage of incorrect red status messages = reference green and prediction red -> Lower Values are better

Datasets

- NEFA Reference
- Early Warning Messages

- BHBA/FPR Reference
- Alert Messages

Reference	Initial Datas	set	New Dataset	
Traffic Light Class	Number of S	Samples/	Number of S	Samples/
	Percentage		Percentage	
Green	551	53	13038	78
Yellow	277	27	2671	15
Red	210	20	1214	7
All	1038		16923	

Reference	Initial Datas	set	New Dataset	
Traffic Light Class	Number of S	Samples/	Number of Samples/	
	Percentage		Percentage	
Green	782	75	12514	74
Yellow	214	21	3708	22
Red	42	4	701	4
All	1038		16923	

Change in prevalence for the NEFA reference -> New calibration necessary!

Prevalences New Dataset

- NEFA Reference
- Clear differences in prevalence between breeds

- BHBA/FPR Reference
- Smaller but existing differences between breeds

Reference	Simmental		Holstein		Brown Swiss	
Traffic Light Class	Samples /		Samples /		Samples /	
	Prevalence % Pi		Prevalence %		Prevalence %	
Green	6095	70	5021	83	1922	86
Yellow	1652	19	764	13	255	111
Red	857	10	291	5	66	3
All	8604		6076		2243	

Reference	Simmental		Holstein		Brown Swiss	
Traffic Light Class	Samples /		Samples /		Samples /	
	Prevalence % Pr		Prevalence %		Prevalence %	
Green	6352	74	4433	73	1729	78
Yellow	1863	22	1431	24	414	18
Red	389	5	212	3	100	4
All	8604		6076		2243	

Establish thresholds for each breed!

Results NEFA Reference

Initial Dataset						
Status	Samples	Ref.	Ref.	Ref.		
Message		Green %	Yellow %	Red %		
Simm	Simmental (Yellow < 80 %, Red < 5 %)					
Green	503	73	21	6		
Yellow	401	41	32	27		
Red	134	13	33	53		

- Large improvements in correct green status messages
- Correct red status messages worse due to lower prevalence
- Acceptable for early warning

New Dataset					
Status	Samples	Ref.	Ref.	Ref.	
Message		Green %	Yellow %	Red %	
Simm	ental (Yell	ow < 77 %	o, Red < 16	%)	
Green	6122	85	13	2	
Yellow	1277	50	35	15	
Red	1205	20	36	44	
Hols	tein (Yello	w < 77 %,	Red < 10 °	%)	
Green	5026	92	7	1	
Yellow	635	51	36	13	
Red	415	21	40	40	
Brown Swiss (Yellow < 67 %, Red < 4 %)					
Green	1924	92	7	1	
Yellow	224	53	35	12	
Red	95	25	46	28	

Long Term Comparison NEFA Reference

- Initial Models overestimated the red status messages due to the high prevalence in the calibration dataset
- Impact on farmers low to intermediate because information material stressed the warning character

Results BHBA/FPR Reference

Initial Dataset					
Status	Samples	Ref.	Ref.	Ref.	
Message		Green %	Yellow %	Red %	
Simm	nental (Yel	low < 38 %	∕₀, Red < 5	%)	
Green	756	93	6	0	
Yellow	179	42	50	8	
Red	102	0	73	26	

- New calibration achieves comparable quality
- Important improvement: Breed specific thresholds

New Dataset					
Status	Samples	Ref.	Ref.	Ref.	
Message		Green %	Yellow %	Red %	
Simm	nental (Yel	low < 29 %	$\sqrt{6}$, Red < 3	%)	
Green	6352	94	6	0	
Yellow	1863	26	65	9	
Red	389	0	65	35	
Hols	stein (Yello	ow < 30 %	, Red < 2 %	6)	
Green	4433	95	5	0	
Yellow	1431	17	76	7	
Red	212	0	69	31	
Brown Swiss (Yellow < 37 %, Red < 7 %)					
Green	1734	94	6	0	
Yellow	328	30	59	11	
Red	181	0	65	35	

Long Term Comparison BHBA/FPR Reference

- Initial Models overestimated red status for Holstein and underestimated for Brown Swiss – New Model and thresholds correct for breed
- Impact on farmers low to intermediate because differences seem acceptable

Conclusions

- Final evaluation of a model should be driven by what the farmer will see look at the accuracy of status messages
- Results of a model evaluation depend on available data
- New data may require adjustments of models
- Development of models for metabolic monitoring is never truly complete –
 in addition to new data, new methods and algorithms should be considered

Thank you for your attention