

Identification of chronic stress biomarkers in dairy cows

C. Grelet, V. Vanden Dries, J. Leblois, J. Wavreille, L. Mirabito, H. Soyeurt, S. Franceschini, N. Gengler, HappyMoo consortium, & F. Dehareng

Walloon Agricultural Research Center (CRA-W), Belgium;

Elevéo asbl by awé groupe, Belgium

French Livestock Institute (IDELE), France

University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), Belgium

Roo.

ICAR welfare workshop 2022

HappyMoo project

Partnership: farmers organizations (DHI) &

To develop monitoring tools for welfare of individual dairy cows.

→ alerts about the freedom from disease, hunger and stress.

Stress workshop: Brainstorming by experts on stress and its indicators

Outputs:

- ✓ Chronic stress is of major interest
- ✓ No consensus on biomarkers

Chronic stress

of

dairv

"stress is the non-specific response of the body to any demand made upon it" (Selye, 1976)

Figure of General adaption syndrome (from A.C. Brown, C.I. Waslien, in Encyclopedia of Food Sciences and Nutrition (Second Edition), 2003)

susceptibility to metabolic, inflammatory and infectious diseases (Moberg et al., 1980; Romero, 2004).
 fertility troubles (Dobson and Smith, 2000; Walker et al., 2008)
 growth disturbances (Elsasser et al., 1995)
 weight (Mormède et al., 2007)
 milk production (Tallo-Parra et al., 2018)

ש welfare of cows

societal perception production

Chronic stress

Figure of General adaption syndrome (from A.C. Brown, C.I. Waslien, in Encyclopedia of Food Sciences and Nutrition (Second Edition), 2003)

Biomarkers of chronic stress???

- hair cortisol
- hearth rate variability
- glycated protein (fructosamine)
- β-endorphin
- lymphocyte profile
- thyroid hormones
- avoidance distance
- activity
- rumination

(Creutzinger et al., 2017; Vesel et al., 2020; Mormède et al., 2007; Comin et al., 2013; Burnett et al., 2015a; Meyer and Novak, 2012; Tallo-Parra et al., 2017; Burnett et al., 2015b; Braun et al., 2017; González-dela-Vara et al., 2011; Trevisi and Bertoni, 2009; Mormède et al., 2007; von Borell et al., 2007; Trevisi and Bertoni, 2009; Kovács et al., 2015; Waiblinger et

Induce 4 week stress through

- severe overstocking
- restricted access to feed
- punctual unusual events

Evaluate and compare potential chronic stress biomarkers

Protocol was approved by the ethical commission of Liège University. In accordance with the EU Directive 2010/63/EU for animal experiments

Experiment

Stress group (severe overstocking for 4 weeks) 15 cows < 5 m²/cow 7 places at feed bunk

Control group 15 cows >10 m² per cow more feed bunks than cows

Experiment (punctual unusual events)

Global measures -MY -SCC -milk composition -weight -BCS -injuries, heat...

Behaviour -observations -avoidance distance -rumination -activity

Heart

Saliva (cortisol)

Blood (Glucose, Fructosamin ,T4, β-endorphine, leucocytes)

Hair (cortisol)

Experiment

Data treatment

Week averages

Linear mixed repeated models (PROC MIXED procedure of SAS) with random effect of cow being REPEATED along the weeks:

 $Y_{ijklmn} = \mu + group_i + week_j + group_i * week_j + cow_k + e_{ijklmn}$

Objective: highlight biomarkers having a different level in week 4 (but similar in week 0)

 \rightarrow level modification due to stress induction.

Results – production variables

Milk Loss since week 0

Milk Yield Weight no difference between groups BCS

(*) $P \le 0.1$ * $P \le 0.05$ ** $P \le 0.01$ *** $P \le 0.001$

Results - behaviour

(*) $P \le 0.1$ * $P \le 0.05$ ** $P \le 0.01$ *** $P \le 0.001$

Activity (min/2 hours) Rumination SD (min/2 hour) Human fear distance (cm) Grooming (obs/hour)

no difference between groups

Rumination

Results – heart rate

(*) P ≤ 0.1
* P ≤ 0.05
** P ≤ 0.01
*** P ≤ 0.001

Hearth rate

RMSSD (HR variability)

Results – biochemical and immune biomarkers

Blood β-endorphin (pg/m) Blood T4 (µg/L) Salivary cortisol (µg/dL) Leucocyte Profile

(*) P ≤ 0.1
* P ≤ 0.05
** P ≤ 0.01
*** P ≤ 0.001

Blood Fructosamine

Conclusions

- Effects on <u>activity</u>, <u>rumination</u> and <u>chasing/head-butt</u>: effect of overstocking, competition and adaptation of animals
- <u>Milk Loss</u>: efficient alert system to detect troubles (but not specific)
- <u>Heart rate</u>: relevant biomarker (but tedious and complex)
- <u>Blood fructosamine</u>: interesting biomarker (but not specific, nutrition and energy balance)
- ✓ <u>Hair cortisol</u>

Next steps

- Analysis of milk composition data
- Duplication of the experiment (april 2021) in France
- Selection of 2 biomarkers
- Large scale sampling for assessment of stress

SAVE THE DATE 27 > 29/04/2022 in Namur, Belgium

Thanks for your interest! c.grelet@cra.wallonie.be

DARINNOV Congress

Innovations to benefit cow welfare and dairy farming sustainability

www.dairinnov.eu

