

AMS in Germany – dataprocessing in milkrecording

Dr. Kai Kuwan, ICAR 2016, Puerto Varas, Chile

vit – Who we are!

- non profit organisation, owned by DHI, AI and Herdbook organisations
- vit provide services for
 - Herdbook and AI-organisation (all Germany and Luxemburg)
 - Genetic evaluation (all Germany, Austria and Luxemburg)
 - Identification and registration (regional)
 - Milkrecording organisation (DHI)
- our service for milkrecording organisation
 - data collecting software for electronic devices
 - laboratory software to connect farm data and milksample data
 - data processing and verification
 - data supply for all kind of herd management
 - paper
 - software
 - web based
- 8 of 12 milkrecording organisation in Germany (and Luxembourg) use our services

vit – member organisation in milkrecording

14,600 farms

- 1,760,000 Cows
- mostly Holstein
- these are 75 % of milk recorded Holstein cows in Germany

Introduction of AMS in Germany

- similar to other european countries
- structural differences in the mid 90's in Germany
 - family driven farms in the west part
 - herd size around 40 cows
 - often breeders
 - cooperations in the east part
 - herd size around 200 cows (with a high percentage of bigger farms)
- first AMS on production farms are installed in the mid 90's
 - mostly on family farms
 - more flexibility
 - open for innovation
 - upcoming interest since the last 10 years of bigger farms
 - problems to require good staff for milking
 - rationalization

Development of AMS in vit milkrecording organisation

vit

Milkrecording in AMS

- in 1997 the first farmers required for milkrecording with AMS
 - their requirement to data processing:
 - comparable results for daily milk yield and contents to conventional herds
 - calculation of a "true lactation yield"
 - requirement of data processing center's:
 - one interface for all supplier's
 - raw data for all further calculation
- national DLQ guideline 1.8 "Milkrecording in AMS"
 - definition of interface
 - definition of 24h milk yield and test day result for ingredients
 - definition to calculate lactation yield

Calculation of contents at testday

- at testday from every milking during a period of 24h should a sample be taken
- accuracy versus costs
- example:

	P%	F%	MYkg	TBM	time	Date	
	3.07	5.92	9.9	351	1:35	20160913	1
	3.18	4.92	14.1	533	19:44	20160912	2
	3.17	4.53	17.4	684	10:51	20160912	3
			14.6	557	23:27	20160911	4
10 h			18.3	899	14:10	20160911	5

calculation of fat % at testday:

F% = (9.9 MYkg x 5.92 F% + 14.1 MYkg x 4.92 F% + 17.4 MYkg x 4.53 F%) / (9.9 MYkg + 14.1 MYkg + 17.4 MYkg)

= <u>5.00 % fat at testday</u>

h

Calculation of daily milk yield

- use of all milking's during 48 h backwards from last sample of each animal
- corrected on 24 h
- example:

	Σ MYkg	ΣΤΒΜ	MYkg	TBM	time	Date	
	9.9	351	9.9	351	1:35	1 20160913	
	24.0	884	14.1	533	19:44	2 20160912	
	41.4	1568	17.4	684	10:51	3 20160912	
	56.0	2125	14.6	557	23:27	4 20160911	
48			18.3	899	14:10	5 20160911	
							•••

- calculation of testday milk yield:
 - milking No 1 is last sample at testday for the cow
 - milking No 1 to 4 are full integrated in the interval of 48 h (=2880 min)
 - milking No 5 is only partly integrated in the interval of 48 h (2880 2125) = 755 min)
 - 18.3 MYkg / 899 Min. TBM x 755 Min. = 15.4 Mykg
 - \Rightarrow (56.0 kg + 15.4 kg) / 48 h *24 h = <u>35.7 Mykg at testday</u>

Calculation of lactation

- Germany use TIM to calculate lactation
- requirement of farmer
 - lactation yield near to the truth
 - use of all milking between two testdays to calculate lactation yield
- very easy in theory
 - sum up all single milkings!
- Very hard in praxis
 - missing data
 - too short period exported by the farmer
 - cows out of system
 - treatment
 - show
 - data loss

AMS - Challenge of data processing

- mass of data up to more than the 90-fold per cow/testday
 - 35 day testday interval X 2.6 milking per day
- storage of an average milk yield for both of the two parts of testday interval is the solution

Calculation of lactation

Use of testday interval

event	date	days		Σ MYkg*	Ø Mykg**	calculation	Σ MYkg
calving	01.09.15						
1. td	11.09.15	10		271.0	27.1	10 x 27.1	271.0
0 td	15.10.15	24	17	481.1	28.3	17 x 28.3	481.1
2. la		34	17	552.5	32.5	17 x 32.5	552.5
	20.11.15	20	7 18	621.0	34.5	18 x 34.5	621.0
3. 10		J.11.15 30	18	774.0	43.0	18 x 43.0	774.0
lactationyield at 20.11.15:				2669.6			2.699.6

* Sum from all single milking in the period

** This milk yield has to be stored additional to the testday result, to calculate lactation

Special quality check during data processing

- data format
 - animal ID
- milk per minute for every single milking
- identification of data loss
- number of sample per testday
- average number of sample per cow
- average milk per milking

Arguments for milkrecording in AMS

- check farm data against information in other (official) database
 - Identification and registration
- approved combination of milkyield data with herdbook and AI data
- approved calculation methods which allow to compare
 - animals
 - farms
 - group of farms
 - same production trades
 - same size
 - same breed

Thanks for your attention!

IT-Solutions for Animal Production