Innovative uses of milk in human nutrition and health

University of Alberta

Paul Jelen Dept. of Agricultural, Food and Nutritional Science University of Alberta Edmonton, Alberta, Canada

Presentation highlights

- Milk the Mother Nature's perfect food
- Physological functionality
- Innovative processing of milk
- The "big three" of functional dairy foods
- New technologies to to produce modern functional dairy foods and nutraceuticals
- Innovative approaches to milk production

What is milk.....

- Mother nature's most perfect food
- only material "destined" to be used as food......
- …...thus a perfect nutraceutical product
- Solution, emulsion, colloidal suspension
- contains caseins, whey proteins, lactose, fats, minerals (importantly Ca an P)
- also contains about 10 000 other compounds

What milk can do... topics of some recent research papers....

- Dietary protein of animal origin is an essential nutrient for bone health (Bonjour, Switzerland)
- Dairy foods appear to play a pivotal role in weight loss management (Zemel, USA)
- Increased intake of dairy products was related to lower periodontis (Al-Zahrani, Saudi Arabia)

Catalysts of developments in dairy technology

- Food safety
- Food quality
- Physiological functionality
- Economic advantages
- Interactions between consumers and technology

Physiologically functional foods and nutraceuticals

FNS

- Functional foods: consumed as part of a usual diet, providing benefits beyond basic nutritional functions
- <u>Nutraceuticals</u>: products isolated/purified from foods, provide physiological benefit or disease protection

<u>Dairy production of</u> milk wordwide - MT		<u>World dairy industry</u> annual turnover - M\$U;	
Buffalo:	75	Dean Foods (USA)) 8 600
Goat:	12	Dary Farmers (US	SA) 8 500
Shoon	10	Danone (FR)	8 100
Sneep:	10	Arla (DE/SW)	8 000
Other:	< 2	Fonterra (NZ)	7 900
(camel,yak)		Lactalis (FR)	7 100

The traditional dairy industry

- Pasteurization, other heat treatments
- Control of fat and protein content
- Membrane processes "cold-separation"
- Concentration and drying >>> heat energy
- Fermented dairy products >>>lactose
- Cheese making >>>> casein + fat + whey
- ice cream >>> freezing, frozen storage

The modern dairy industry

- Processing for maximum health benefits
- Extraction of valuable milk components
- Modification of milk and milk components
- Enrichment of milk with healthful components
- Production of nutraceuticals from milk
- Fermentation to convert milk components
- Milk as carrier of healthful bacteria

Physiologically functional dairy products

THREE ASPECTS OF PHYSIOLOGICALLY FUNCTIONAL DAIRY FOODS:

- 1. Probiotic bacteria (+ prebiotics = symbiotics)
- 2. Bioactive milk components (lactose, whey proteins, minerals (calcium)
- 3. Bioactive peptides (produced from milk proteins by fermentation or technology)
- (4 also lactose-modified products??)

Probiotics, prebiotics, symbiotics

- Healthful bacteria (acidophilus, bifidobacteria, new strains) - from the time of Metchnikoff
- To maximize probiotic effectivenness growth promoters (prebiotics - oligosaccharides)
- New fermented dairy products (bioactive yogurts, Evolus, Gaio

Production and/or extraction of valuable milk components

Whey proteins

- Lactoferrin
- Lactoperoxidase
- Bioactive peptides
- Emulsifiers from fat globule membrane
- Conjugated linoleic acid (CLA)
- Oligosaccharides

Milk proteins as nutrients and functional components

<u>Advantages</u>

F NS

Nutritional value (composition, digestibility) Solubility/functional properties (gel, foam, emulsion) Bland flavor Biological activities

<u>Limitations</u>

Allergenicity High cost (low concentrations) Bland flavor Heat sensitivity (re - biological activity)

Bioactive milk (whey) proteins Whey proteins have various biological functions important for the newborn: immunoglobulins lactoferrin lactoperoxidaseor for milk production: α-lactalbumin

Nutraceutical properties of intact milk proteins

- Carriers of vitamins, minerals and fatty acids
- Anti-cancer properties (lactoferrin? WPI)
- Immunomodulatory properties
- Hypotensive properties (ACE inhibition)
- Stimulation of intracellular glutathione
- Antibacterial properties (lactoferrin, lactoperoxidase)
- Health improvement in HIV-infected patients

Immunopotentiation by intracellular glutathione

- Whey protein used as a basis for sport nutrition
- ...but also as an immunopotentiating agent...
- ...based on work of Dr. Gustavo Bounous (McGill University, Montreal)....
- ...promoting intracellular glutathione synthesis

Modification of milk and milk components.....

- …to increase the Ca content (UF)
- ϕ ...to avoid allergy problems (β-lactoglobulin)
- …to improve the survival of probiotic bacteria
- ...for increased immunopotentiation
- ...leading to better utilization of dairy products (protein standardization)
- … increasing marketability of dairy products

....the case of milk proteins: bioactive peptides

Two ways to generate bioactive peptides:

- Microbial Fermentation
 - in dairy products
 - 🔶 in a reactor

FN S

In vitro enzymatic hydrolysis

Bioactive peptides to alleviate hypertension.....

- 30% of mortality related to hypertension or to it's renal, cardiac or cerebral complications
- Systolic pressure >140 mm Hg
- Diastolic pressure >90 mm Hg
- Vasoconstriction of blood vessels involves kidney, blood and adrenal glands via renin, angiotensin & aldosterone

ACE inhibitors in fermented milk products

- Calpis (L. helveticus + S. cerevisiae)
- Clinical data
- Significant blood pressure reduction
- Dose response
- Examples of peptides identified: Val-Pro-Pro (IC₅₀ = 9 μM)
 - Ile-Pro-Pro (IC₅₀ = 5 μ M)

ACE inhibitory peptides produced from casein

- Casokinins
- Clinical data
- Significant pressure reduction with 10 g/day casein hydrolysate
- Dose response
- Example of peptide identified:
 α_{s1} 25-27 Val-Ala-Pro (IC₅₀ = 2 μM)

ACE inhibitory peptides produced from whey protein

🔷 BSA

- β-lactoglobulin
- Rat studies
- Dose response
- Example of peptides identified:
 - β -lg f142-148 (IC₅₀ = 43 μ M)
 - β -lg f102-105 (IC₅₀ = 172 μ M)

Modification of milk and milk components - the case of lactose

- A unique disaccharide (glu-gal) found in milk
- Primary source of energy for the newborn
- Milk of all mammals contains lactose
- Human milk particularly rich in lactose
- Bacteria utilize lactose in fermentations
- Lactose intolerance widespread worldwide

The problem of lactose in milk and dairy products

- lack of the ability to digest the lactose in most adult populations worldwide
 - lactose maldigestion (normal case for adults)
 - lactose intolerance (real or perceived?)
 - symptoms...flatulence, borborygmi, diarrhea...
- low lactose and lactose-free dairy products a major industrial opportunity
- lack of suitable technology a major hindrance

Concentration of lactose in milk of different mammals				
Species	Lactose content (%)	H ₂ O content (%)		
Human	7.1	87.1		
Cow	4.6	87.3		
Buffalo	4.8	82.8		
Goat	4.3	86.7		
Sheep	4.8	82.0		

Alleviating lactose intolerance for increased consumption of dairy foods

- Lactose hydrolysis (milk becomes sweeter):
 - * Acid-catalysed hydrolysis
 - * Immobilised enzyme technology
 - * Membrane based enzyme reactors
 - * Free (soluble) purified enzymes
- 🔶 OR.....
- 🔶 Lactose free milk

The lactose free milk

- Chromatography used in sugar industry
- Chromatographic separation of lactose from milk
- Residual fraction contains all proteins and salts
- Residual lactose hydrolyzed to produce the same level of sweetness as in milk
- Final patented process two streams
- Result: lactose-free milk (<0.01% lactose)</p>

Lactose derivatives: GALACTO - OLIGOSACCHARIDES

Properties

Di-, tri-, tetra- or higher -saccharides Intermediate sweetness Highly heat and acid stable Bifidogenic factor Non-digestible

Applications

Probiotic foods Nutraceutical (FOSHU) foods (anticarcinogenic) Non-cariogenic foods Competing against inulin

- I otal Cheddar production in main countries (K1):

 United states 1 275
 United Kingdom 240

 New Zealand
 250 (?)
 Australia
 160

 Canada
 130
 Ireland
 74
- Total production of Cheddar: > 2 MT (i.e. ~ 15% of all cheese made in the world) (Emmental ~ 500 kT; Gouda-type 1.4 MT)

Bioactive cheese - a traditional food with added health benefits

Festivo cheese (MTT, Finland):

- low fat milk (+ high CLA content???)
- starter culture containing 12 components
- activity of ACE inhibitory peptides highest after 13 weeks ripening

CLA formation in cheese (ALP, CH)

 lactic and propionic acid bacteria can form CLA during ripening of Emmentaler, blue and other cheeses

New trends in milk production

- Modifications of milk composition:
 - > manipulation of lactose output (?)
 - > milk protein modifications
 - > modifications to immunoglobulin content
- Modification of milk fat composition (PLFS)
 - > increased CLA production
- Increased productivity of cows
- Automated milking systems

Conjugated linoleic acid (CLA) as a nutraceutical component

- CLA found in foods of produced by ruminants
- Product of microbial metabolism
 - in rumen
 - in fermented dairy foods
 - in cheese
- Several isomers, not all have health benefits

Proposed healthful effects of Conjugated Linoleic Acid

- inhibits carcinogenesis / tumorigenesis
- reduces body fat content
- increases muscle mass build-up
- decreases of atherosclerosis
- mitigates hyperinsulinaemia
- enhances the immune system
- alters favourably the LDL/HDL ratio

Organic milk production and other milk quality issues

- Automated milking vs.organic milk production
- Combined effect of feed and breed (e.g. Alps)
- Increased production of colostrum-like milk
- Use of Bovine Growth Hormone

Dairy Technology developments in a context of time

"... most of the technologies that will shape the dairy industry 10-20 years from now are already known..."

"...technology will be both an enabler and a follower of trends..."

(Marshall, IDF Congress, 1998)

In conclusion...novel uses of milk in nutrition and health

FNS

- Milk based components can be isolated and used in many other foods
- Modification of milk components for increased physiological functionality
- Bacteria "happy" in the milk can be used for improved physiological functionality
- Dairy products are probably full of still unknown, nutraceutically - interesting components (osteopontin, mucines....)

• ARE THE KNOWN OR UNKNOWN COMOPONENTS REALLY EFFECTIVE IN HUMANS????

• ...and are the concetrations at which they are effective realistic for foods?

