

Comparative assessment of methods for estimating genomic relationships and their use in predictions in an admixed population

M.L. Makgahlela^{1,2}, I. Strandén^{1,2}, U.S. Nielsen³, M.J. Sillanpää^{1,4}, J. Juga¹ & E.A. Mäntysaari²

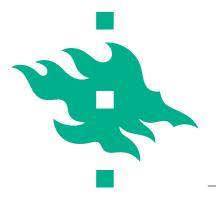
¹University of Helsinki, Finland ²MTT Agrifood Research Finland, 31600 Jokioinen ³Danish Agricultural Advisory Service, Udkaersvej 15, Denmark ⁴University of Oulu, Finland

Introduction

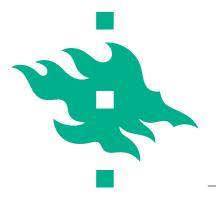
- Accurate estimation of relationships between animals is an important step in any routine genetic evaluations
- Relationships were previously based on pedigree information only
- Conversely, most current evaluations use both markerderived relationship matrix (G) and pedigree-based relationships (A)
- **G** estimators are more accurate than **A** because they have more variation between closely related individuals

Mahlako Makgahlela

Introduction


- The accuracy of G estimators may be even higher
 - If founder population allele frequencies were available
- In the absence, current population allele frequencies are used to make G and that defines the founder population
- The use of observed allele frequencies in structured populations however, may lead to biased estimation of G

Objectives

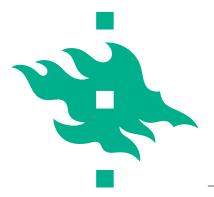

- To estimate A and G matrices
 - Different G matrices were estimated using either observed allele frequencies across breeds or breed allele means
- To estimate breeding values (EBV) and direct genomic values (DGV) using different G matrices
 - Estimated coefficients and their respective DGVs were compared

The population

- The Nordic Red dairy cattle (RDC) is a combined population
 - 3 sub-populations from DNK, SWE & FIN
 - 2nd largest breeding population, with Ne larger than Holsteins
 - Most animals in the data (~98%) are composites of breeds
- Absence of pure breed animals remains a major limiting factor for the estimation of breed-specific allele frequencies

Materials and Methods

- Data were genotypes of 38194 SNP markers for 4106 bulls
- Breed proportions for bulls were estimated from the full Nordic RDC pedigree (>4m animals)
 - 3 main breeds defined with mean BP>10% were,
 - SRB, FAY & NRF
 - Remaining breeds with mean BP<10% -> breed "OTHER"
- Phenotypes were cow IDDs for milk, protein & fat, from 2010 NAV routine evaluations

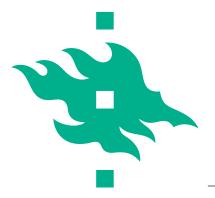

- Genomic relationships (G) were estimated following methods 1 and 2 by VanRaden (2008)
- G estimated using observed allele frequencies (GOF)

$$GOF = ZZ'/k$$

•
$$Z_{i,j} \leftarrow (0-2p_j); (1-2p_j); (2-2p_j)$$

Number of "second" alleles

p_j is the frequency for the 2nd allele & $k=2\sum_{j}p_{j}(1-p_{j})$



G matrices estimated using breed allele means (GBM and GBM2)

GBM = MM'/k

- $M_{i,j} \leftarrow (0-2p_{ij}); (1-2p_{ij}); (2-2p_{ij})$
- p_{ij} is the expected allele frequency of marker j for bull i given it's base breed proportions
 - ✓ computed by multiple regression of genotypes on BP

- Modification of VanRaden method II
- There,

$$G_{PvRII} = ZDZ'/m = ZD^{0.5}D^{0.5}Z'/m$$

m is the number of markers

Following the same, we define:

GBM2 = M*M*'/m

$$M *_{i,j} \leftarrow \frac{-2p_{ij}}{\sqrt{2p_{ij}(1-p_{ij})}}; \frac{1-2p_{ij}}{\sqrt{2p_{ij}(1-p_{ij})}}; \frac{2-2p_{ij}}{\sqrt{2p_{ij}(1-p_{ij})}}$$

m is the number of markers

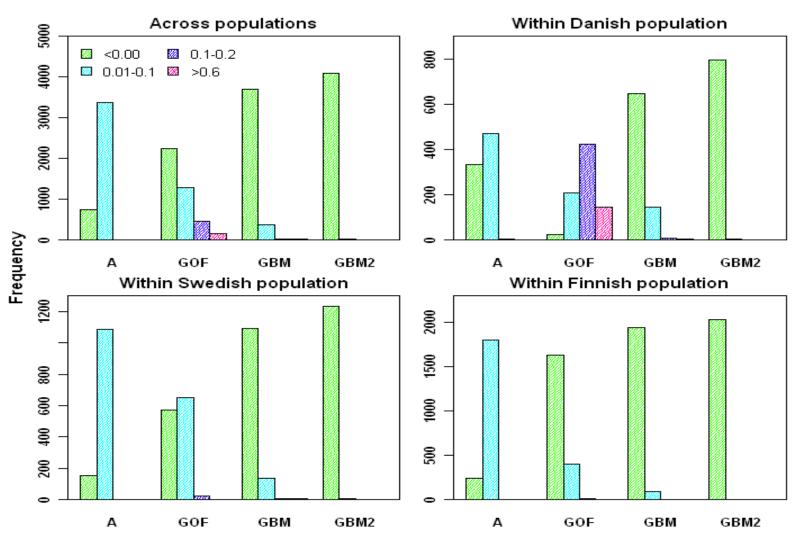
Combined A and G matrices

- Pedigree relationships (A) were estimated for genotyped bulls only, using RelaX2 computer program
- GOF and GBM2 were combined with 20% weight on A to yield GAOF and GABM2
 - $G^* = wG + (1-w)A$

Statistical Analyses

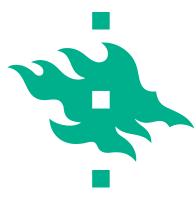
- Variance components, EBVs & DGVs were estimated separately for each matrix, using a GBLUP model
- y = Xb + Za + e,
 - y is a vector of cow IDD
 - X and Z are design matrices allocating records to b and a
 - b is a vector of fixed mean and breed regression effects
 - a is a vector of breeding values
 - e is a vector of residuals
- Breed regression effects were used only for predictions with GBM and GABM2

Predicted values included fixed regression solutions



Statistics of (diagonals)-1 by estimator

	Mean	Min	Max	Mean	Min	Max	
	Acros	Across populations			Within Swedish bulls		
Α	0.012	0.000	0.135	0.008	0.000	0.081	
GOF	0.019	-0.129	0.379	0.006	-0.129	0.184	
GBM	-0.051	-0.254	0.310	-0.043	-0.226	0.234	
GBM2	-0.242	-0.387	0.093	-0.238	-0.387	0.029	
	Withir	Within Danish bulls			Within Finnish bulls		
Α	0.007	0.000	0.109	0.016	0.000	0.135	
GOF	0.136	-0.027	0.328	-0.021	-0.123	0.157	
GBM	-0.040	-0.173	0.310	-0.062	-0.217	0.283	
HIGBM2PISTO HELSINGFORS UNIVERSITE	-0.233	-0.339	0.093	-0.250	-0.377	0.077	
UNIVERSITY OF HELSINKI	www.helsinki.fi/yliopisto						


Histograms of (diagonals)-1 for A and G matrices

Correlations between A and G matrices for pair-wise relationships


	Across populations		Within Swedish bulls	
A	0.702	0.661	0.789	0.781
GOF		0.537		0.784
GBM				
	Within Danish bulls		Within Finnish bulls	
A	0.644	0.856	0.819	0.759
GOF		0.625		0.876
GBM				

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Correlations between EBV & DGV from different estimators for validation bulls

M2 GAC	OF GABM2
0.66 0	.76 0.76
1.00 0	.98 0.98
1.00 0	.98 0.98
0	.98 0.98
	1.00
	www.helsink



Conclusions

- The use of simple observed allele frequencies across breeds over-estimate values in G for:
 - Populations with the least number of animals in the combined data and/or,
 - Individuals from distantly related populations
- Estimated breed allele means reduced country differences in coefficients, similarly, but shifted them too much torwards zero or less

Mahlako Makgahlela

Conclusions

- The prediction of DGV converged to similar solutions regardless of allele frequencies used
 - Inclusion of breed regressions for GBM & GBM2 brought breed means back into the DGV
- The validation accuracy slightly increased when A and G matrices were combined
- A single-step GBM2 and A including non-genotyped animals could increase the prediction of DGV even more

