

37th ICAR Annual Meeting May 31 – June 4 2010, Riga, Latvia

Adding Value to Test-Day Data by Using Modified Best Prediction Method

Alain Gillon¹, S. Abras², P. Mayeres², C. Bertozzi², and N. Gengler ^{1,3}

Gembloux Agro-Bio Tech, University of Liege (GxABT, ULg) – Gembloux, Belgium
 Walloon Breeding Association (AWE) – Ciney, Belgium
 National Fund for Scientific Research (FRS-FNRS) – Brussels, Belgium

Lactation yields are used for:

o Genetic evaluations

First models: lactation models

Now: Test - day models more and more used

o Management purposes

Farms are getting larger

Economic sustainability becomes difficult to achieve

Methods for computing lactation yields (1):

o Official method (ICAR)

Test interval method (TIM)

o Other methods approved by ICAR

Interpolation using standard lactation curves

Multiple trait prediction (MTP)

Best prediction (BP)

Methods for computing lactation yields (2):

o Other Methods based on test-day models (TDM)

Pool and Meuwissen (1999), Mayeres et al. (2004), Vasconcelos et al. (2004)

Mayeres et al. (2004):

Herd x year (fixed)

Herd x month x 5 years (fixed)

Herd x test-day (random)

Sum of all effects (except HTD) = daily yield

Methods for computing lactation yields (3):

o TDM can also bring management tools

Mayeres et al. (2004), Koivula et al. (2007), Caccamo et al. (2008)

Herd effects reflect evolution of management and are corrected for age, lactation stage, breed ...

- Dairy farmers need lactation yields and management tools a few days after milk recording
 - impossible with population wide TDM

Objectives

Develop a new lactation yields computation method which:

- o Brings useful management tools to farmers
- o Is robust with alternative testing plans
- o Gives results directly after milk recording

Test the ability of this new method to predict daily and lactation yields

Multi-trait:

milk, fat and protein yields, somatic cell score

Standard lactation curves account for:

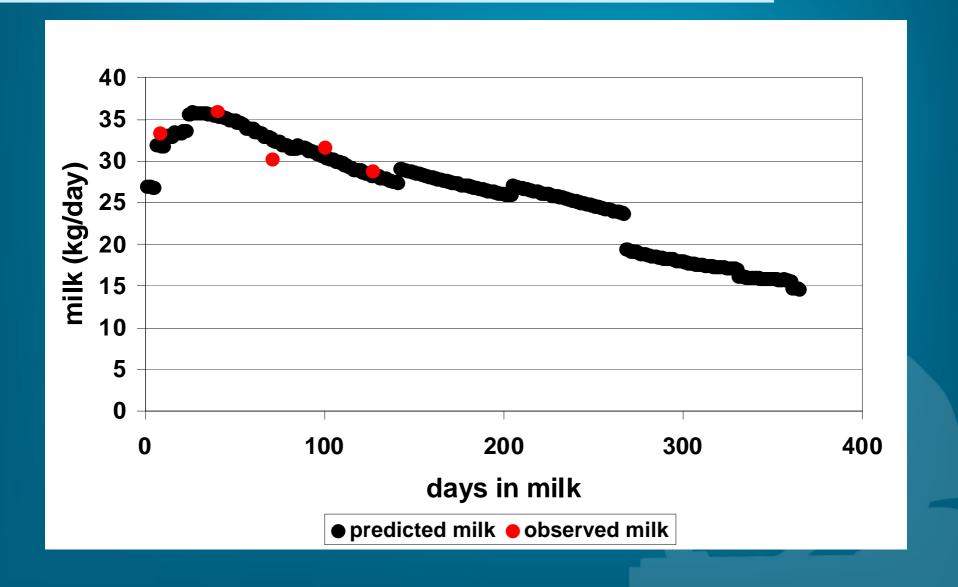
- breed
- age at calving
- year of production within herd
- season within herd
- year of calving within herd
- genetic value of the cow

Random regression test-day model:

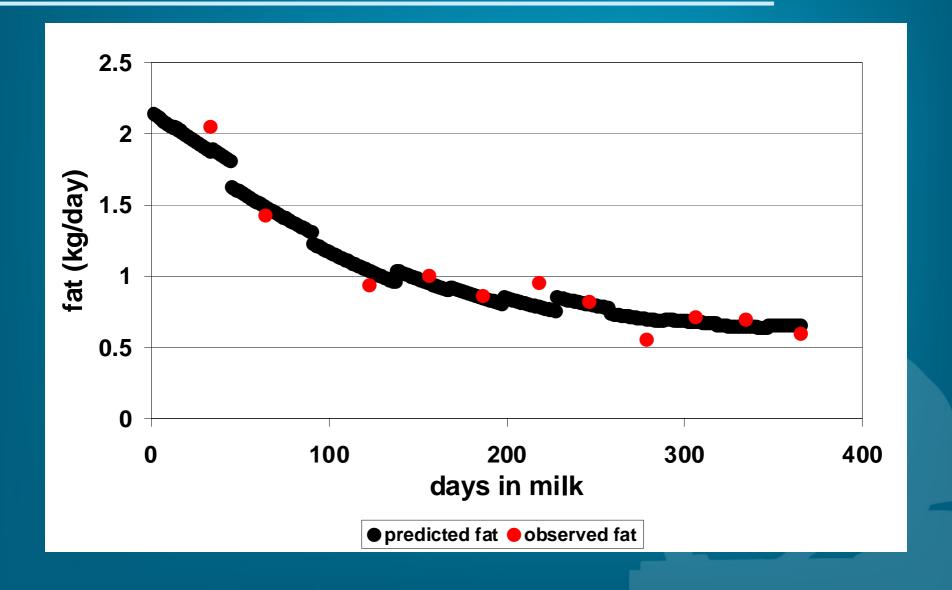
- o modification to allow prediction of herd effects at each day of the lactation (Mayeres et al. (2004))
- o Population level effects are pre-corrected to allow daily run at herd level
 - **√** Genetic
 - ✓ Stage of lactation x breed x age at calving

Differences with BP:

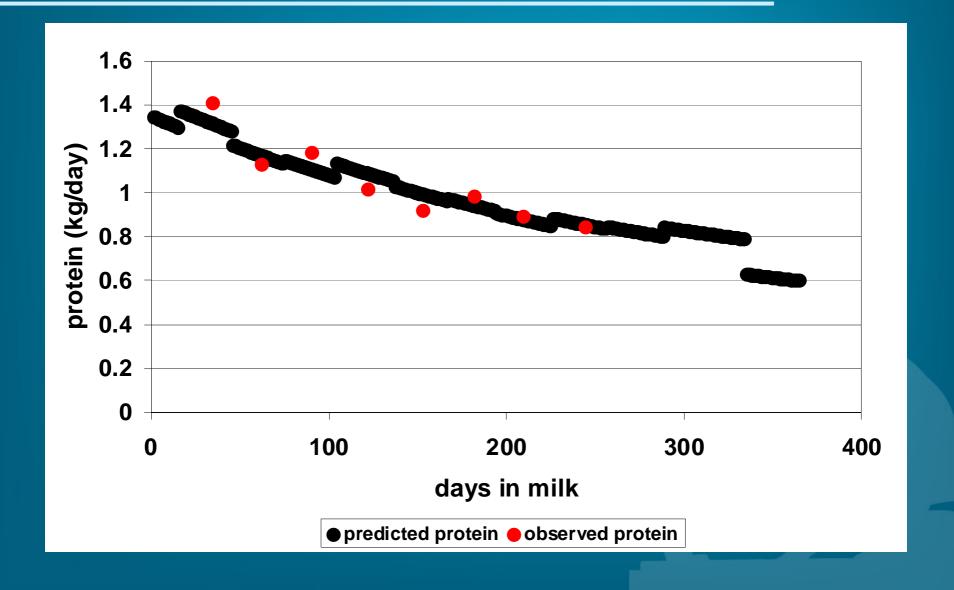
- o Herd-level standard lactation curve components are computed jointly with random effects
- o Genetic value of the cow is taken into account

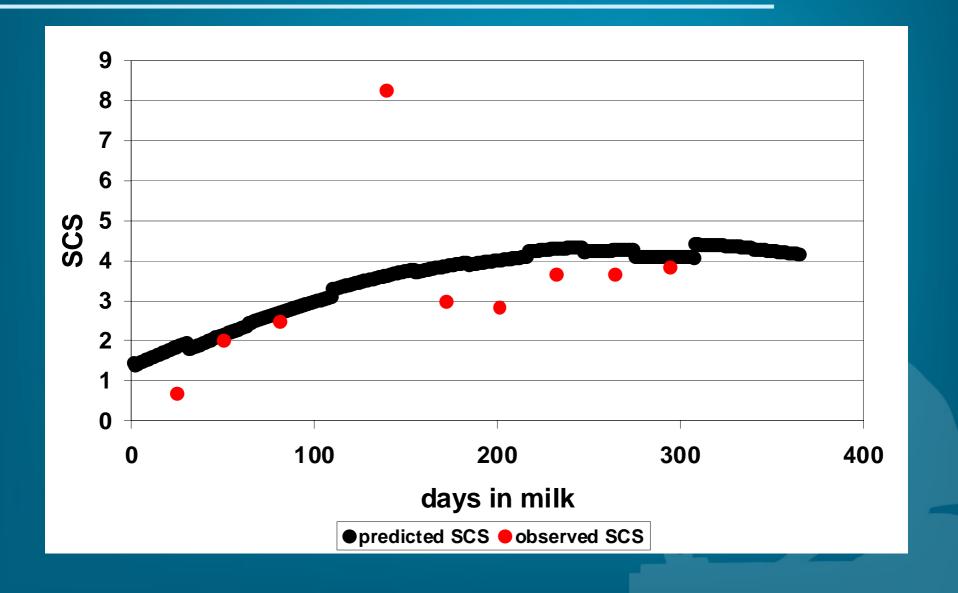

Between BP (selection index) and population wide TDM (BLUP)

---- called modified best prediction (mBP)


A variant was also tested: mBPb

- o Bayesian prediction
- o Sum of residuals = 0 by lactation


Milk yield (kg)


Fat yield (kg)

Protein yield (kg)

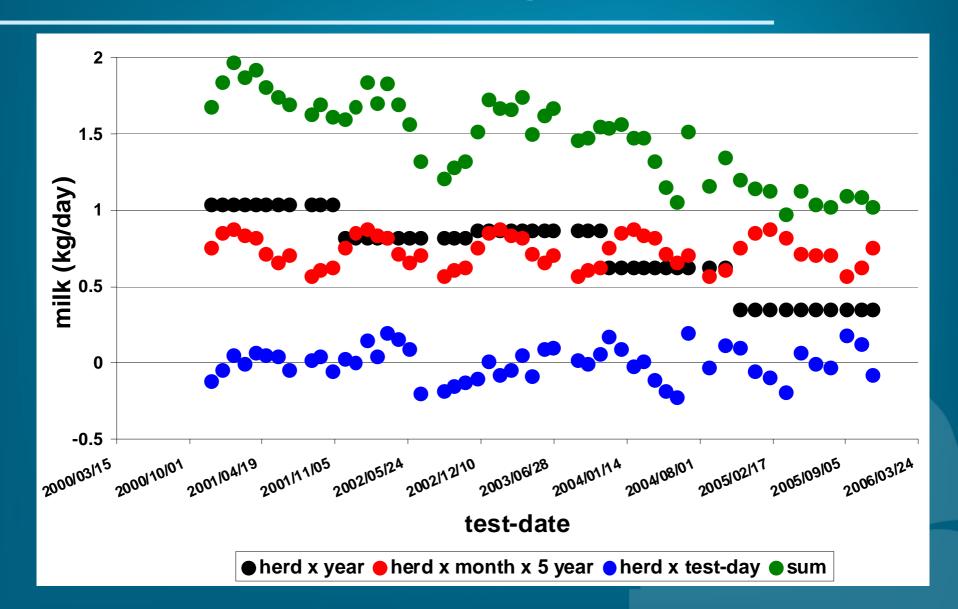
Somatic cell score

Management tools

Daily yields prediction

Peak yield and persistency

305-d lactation yields prediction


Even if lactation is in-progress

Alerts (Koivula et al., 2007; Bastin et al., 2008; Bastin et al. 2009)

If observed production is different than predicted

Evolution of management level

Evolution of management level

On daily yields prediction

o Adjustment quality:

Difference between observed records used for solving the model and predicted values for these test-days

Adjustment quality (1st parity)

Trait	N		mBP			mBPb			
		ME ¹	MSE ²	corr. ³	ME ¹	MSE ²	corr. ³		
Milk (kg)	651,266	0.00	4.28	.95	0.00	4.17	.95		
Fat (kg)	651,266	0.00	0.01	.92	0.00	0.01	.92		
Protein (kg)	651,266	0.00	0.01	.93	0.00	0.01	.94		
scs	556,791	0.00	0.70	.85	0.00	0.68	.85		

¹ ME: mean error

² MSE: mean square error

³ corr.: correlation between observation and prediction

On daily yields prediction

o Prediction ability

Ability to predict values of the following test-day

Prediction ability (1st parity)

Trait	N		mBP			mBPb			
		ME ¹	MSE ²	corr. ³	ME ¹	MSE ²	corr. ³		
Milk (kg)	7,368	-0.09	12.37	.87	-1.73	29.47	.75		
Fat (kg)	7,368	0.00	0.03	.83	-0.06	0.06	.69		
Protein (kg)	7,368	0.01	0.01	.85	-0.07	0.03	.72		
SCS	6,233	0.00	1.70	.57	-0.22	2.31	.49		

¹ ME: mean error

² MSE: mean square error

³ corr.: correlation between observation and prediction

On lactation yields prediction

o Daily milk production data collected in the field:

4 herds - 312 cows - 562 lactations - 132,607 daily productions

o Simulation of test-day records

Respect of schedule of conditions and characteristics of Walloon Region of Belgium

On lactation yields prediction

- o Comparison of real lactation yields with mBP, mBPb, BP, and TIM
- o BP downloaded on AIPL website
 - Pre-correction for parity x age at calving x breed
 - Standard lactation curves account for herd x season of calving
- o Terminated and in-progress lactations

Terminated lactations

		mBP		mBPb		ВР		TIM	
	N	r.bias ¹	corr. ²						
ALL DATA									
	80200	-0.04	0.991	0.07	0.990	-2.12	0.985	0.33	0.990
BYPARITY	1								
lact=1	26600	0.00	0.985	0.13	0.985	-5.49	0.979	0.24	0.984
lact=2	17600	0.11	0.990	0.20	0.990	-1.78	0.987	0.50	0.990
lact=3	15600	-0.30	0.991	-0.15	0.991	-0.50	0.991	0.18	0.990
lact=4	10000	-0.09	0.990	0.17	0.989	0.11	0.989	0.62	0.988
lact=5	4800	-0.36	0.986	-0.11	0.987	-0.25	0.988	0.23	0.987
lact=6 +	5600	0.51	0.988	0.02	0.988	-0.18	0.987	0.18	0.988
BY DATA COLLECTING PLAN									-4
A4	69774	-0.01	0.991	0.08	0.991	-2.07	0.986	0.32	0.991
A6	10426	-0.24	0.988	-0.07	0.987	-2.43	0.982	0.36	0.987

¹ relative bias (%) = (mean – real mean) * 100 / mean real

² correlation between real and predicted lactation yields

In-progress lactations

AVAILABLE	N	mBP		mBPb		ВР		TIM	
TESTS		r.bias ¹	corr. ²	r.bias ¹	corr. ²	r.bias ¹	corr. ²	r.bias ¹	corr.2
1	3179	-2.94	0.907	-4.45	0.811	0.19	0.838	-	-
2	5638	-1.42	0.934	-1.19	0.884	3.04	0.896	-	-
3	6271	-0.50	0.948	0.48	0.920	2.41	0.923	-	-
4	6695	-0.27	0.960	0.73	0.943	1.04	0.942	-	-
5	7603	-0.22	0.974	0.60	0.966	-0.04	0.962	- 1	-
6	7211	-0.33	0.979	0.37	0.975	-0.81	0.968	-	-
7	6842	-0.32	0.985	0.27	0.983	-1.15	0.977	-	-
8	6066	-0.47	0.988	-0.09	0.987	-1.55	0.981		-
9	5267	-0.32	0.992	-0.04	0.991	-1.74	0.986	- 4	
10	3701	-0.34	0.992	-0.17	0.992	-2.41	0.987	-	
11	2656	-0.38	0.993	-0.17	0.992	-2.46	0.988	-	

¹ relative bias (%) = (mean – real mean) * 100 / mean real

² correlation between real and predicted lactation yields

Conclusions

Modified best prediction:

- o Gives a good description of lactation curve
- o Gives useful management tools
- o Results are available directly after milk recording

e-mail: alain.gillon@ulg.ac.be

Thank you for your attention!

Study supported by:

- □ Ministry of Agriculture of the Walloon Region of Belgium (SPW – DGARNE)
- □ National Fund for Scientific Research (FRS – FNRS)