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Abstract

Phenomics is the discipline of deriving methods to accurately describe the

characteristics of an animal. Being able to routinely and accurately measure, and

predict, the (future) performance of an animal (and therefore system) is useful both in

day-to-day farm management but also in optimising genetic gain. Animal

characteristics, often termed phenotypes, can be broadly classified into: 1) producer

scored – mastitis, lameness, milking speed, temperament, 2) professionally

scored/recorded – linear type classification, veterinary surgeons, artificial

insemination technicians, 3) technological – mid-infrared spectroscopy of milk,

reproductive tract ultrasound, video image analysis, 4) statistical – herd-level

solutions from genetic evaluations after accounting for genetic and selected non-

genetic effects, 5) genomics – contribution to personalised management and risk

assessment, 6) “next generation” – transcriptomics (i.e., expression profile for genes

at a given time period), and 7) experimental – extensive phenotyping (e.g.,

immunological challenge) of a smaller number of animals divergent for a

characteristic under investigation (e.g., genetic merit). The collation of all data

sources into a useable format that can be relayed back, in an easy-to-use format, to the



producer via a decision support tool, will require a concerted, multi-disciplinary, and

multi-national effort.
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Introduction

Most commentary in dairy cattle breeding nowadays relates to genomic selection.

However routine access to accurate phenotypes, on a large population of animals, is

still necessary for accurate and up-to-date relevant “genomic keys” or estimates of

genetic marker effects. Furthermore, genetic gain is expected to be at least 50%

greater with current genomic selection approaches (McHugh et al., 2011; Pryce et al.,

2010; Lillehammer et al., 2011). This is mainly achievable through the greater use of

younger males rather than previously where only proven bulls, following progeny

test, were used widespread. Increased genetic gain, especially if not undertaken

concomitant with a detailed phenotyping strategy, can reduce the opportunity to purge

out deleterious effects, especially if not identified in the phenotyping strategy. For

example, sub-clinical measures of disease are often not recorded (or sometimes not

even recognised by the producer) but may be early warning signs of unfavourable

correlated responses to selection. Moreover, the consumers in the near future are

likely to demand more diverse breeding goals which include traits such as animal

welfare, animal disease, product quality (i.e., nutritional quality and consistency), and

environmental footprint. To-date phenotypes for many of these traits are generally

lacking.

Phenotypes, a term often used to describe characteristics of an individual (e.g.,

an animal), can be broadly classified into: 1) producer scored, 2) professionally

scored/recorded, 3) technological, 4) statistical, 5) genomics, 6) “next generation”,

and 7) experimental (monitoring). Here we describe each of these strategies.

Although, most phenotyping exercises and discussions on phenotyping in dairy cattle

focus on the mature animal, cognisance must also be given to the nulliparous animal.

The critical importance of phenotypes in Irish dairy cattle breeding is testified by the

number of co-authors on this article, all heavily involved in phenotyping of cattle in

Ireland.



Producer scored

Producers are consistently interacting with their livestock and therefore

provide an excellent source of “on-the-ground” data. Biasing herd average

performances can of course easily occur with producer scored traits, consciously or

not, by under-recording. However, because modern genetic evaluations are based on

contemporary comparisons, systematic under- or over-recording of incidence data or

manipulating mean performance will not greatly affect genetic evaluations. However,

preferential treatment bias, where all but a few (or one) animal are scored poorly (or

managed differently) can influence genetic evaluations and is currently a source of

concern in bias of genomic evaluations.

Examples of producer scored traits include calving difficulty, mastitis,

lameness, other health events, farmer satisfaction/workability, temperament, and

milking speed; less commonly recorded phenotypes include body condition score.

Direct calving difficulty (Purfield et al., 2012) and farmer satisfaction/workability

(Berry et al., 2007; Visscher & Goddard 1995., Cue et al., 1996) are low to

moderately heritable while farmer scored health events tend to be even more lowly

heritable (Berry et al., 2010; Pryce et al., 1998). However, health and fertility traits

tend, on average, to be lowly heritable irrespective of the data source (Berry et al.,

2011b), which could in part be due to the genetic architecture but may also be due to

greater inaccuracies of recording. In beef cattle, docility at weaning and calf quality at

weaning age, both measured by Irish beef farmers at weaning are moderate to highly

heritable (Pabiou et al., 2012; Crowley et al., 2011) and in the case of calf quality are

moderate to strongly genetically correlated with carcass quality and value (Pabiou et

al., 2012).

The main advantage of farmer scored traits is that they are inexpensive to

record as long as the necessary systems for ease of recording and uploading of data to

national databases exist. The main disadvantage of farmer scored traits is that they are

subjectively recorded and this can contribute to a reduced heritability due to the

introduction of residual variation into the phenotypic variation. However, if all

producers score these traits then large progeny group sizes will be achievable and thus

high accuracy of selection will prevail, even with low heritability. Although many



dairy bulls now used are genomically tested without any phenotypic information,

access to accurate traditional breeding values is still required for accurate genomic

predictions.

Phenotypes that are not commonly recorded by producers in many countries

but that should possibly be considered include calf viability as well as traits such as

the intensity and duration of oestrus. Technological advances may help reduce the

necessity for producers to record a plethora of phenotypes and are discussed in a later

section. For example, electronic milk recording that records the initiation and

completion of milking, may supplement farmer scored milking speed and similarly

milking temperament could also be scored by milk recording meters that can identify

when milk clusters are kicked off. The heritability of actual recorded milking speed is

greater than that of farmer scored milking speed (Rensing and Ruten, 2005).

Furthermore, automated body condition score (Roche et al., 2009) may replace (or

supplement) farmer scored body condition score.

Professionally scored

Many professionally scored phenotypes exist in dairy cattle and probably the

most well known is linear type classification scored by trained classifiers. Linear type

traits describe different morphological characteristics of an animal including body

size, feet and legs, and structure of the mammary system (Coyne et al., 2012). Other

professionally recorded traits include health/disease diagnosed by veterinarians

(Emanuelson et al., 1988), feet and leg ailments recorded by professional hoof

trimmers (Buch et al., 2011; Van der Waaij et al., 2005; Van der Linde et al., 2010)

and cow insemination information recorded by AI technicians (Berry et al., 2012b).

Professionally scored traits, although probably scored with greater accuracy

(at least consistency) across herds generally incur a cost of recording. Key to

minimising the cost of recording many of these data, without the requirement for

legislation, is to: 1) provide feedback, in a useful and understandable format for the

recorder to improve the profitability of their business, or 2) remove the necessity of

duplicate recording or transcribing such as may be required for receipt and payment.

In the case of providing information for use in a business model, veterinarians, for

example, may be given access to herd summary (and individual cow information) for



all their clients. These phenotypic measures may be adjusted for genetic merit effects

and therefore may better reflect management (see section on statistical phenotypes).

Herds performing poorly relative to contemporaries may therefore be easily identified

and remedial or prophylactic action can be taken. Problem animals within these

poorly performing herds may also be easily identified. Furthermore, herd temporal

trends may be easily identifiable and action taken early. Linking these data to animal

movement information and the herds the purchased animals originated from, can

provide very useful information especially on likely disease status. This type of

information can be very useful for veterinarians but can only be accomplished if

veterinarians (and producers) accurately record the data. Accurate recording of data is

likely to be an iterative process at the beginning with the observable benefit from herd

reports prompting greater, more accurate and more complete recording.

Given the cost of some professional recording systems, 1) the usefulness of

the gathered information, and 2) alternative methods of recording to reduce costs must

be constantly investigated. For example, one of the main objectives in collecting

linear type classification information was its apparent association with cow

functionality and longevity. However, health traits such as mastitis and lameness are

now routinely recorded in most countries, as is animal longevity. Although the

heritability of these traits tend to be low (Berry et al., 2011b), the improvement in

accuracy of selection from inclusion of linear type traits in multi-trait genetic

evaluation for these functional traits is generally low, in Ireland at least, because of

the low level of recording of linear type trait information. Nonetheless, linear type

trait information also provides clear information of the morphological structure of the

animal including its mammary system and can be used in assortative mating

programmes to rectify or improve any unfavourable cow characteristics such as poor

teat placement. The routine use of such information by dairy farmers, however,

should be quantified and a cost: benefit analysis on the recording of linear type trait

information undertaken. Coincidently, a similar conclusion is evident for linear type

classification in beef; access to serial live-weight measurements and carcass

information questions the requirement for costly linear type classification although the

latter does provide an early indication of the performance of an individual (McHugh

et al., 2012; Pabiou et al., 2012) where no progeny information is available. However,

has a cost: benefit analysis ever been undertaken?



Alternative methods to professional recording of traits also exist and are

discussed in greater detail in the section “Technological phenotypes”. In Ireland do-it-

yourself milk recording (Berry et al., 2006) is used in 25% of herds that milk record.

Although this method still requires a professional to distribute the milk meters to

farms, there is no requirement (and therefore no cost) of a professional to be present

during the milk recording process, although extra labour requirement (either from the

farmer or a family member) is still necessary. The labour requirement is however

reduced by the requirement for only one milk sample (either AM or PM milking) for

compositional analysis and prediction equations applied to convert to a 24-hour

equivalent (Berry et al., 2006).

Future research on phenotyping needs to adopt a multi-disciplinary approach

among different professional disciplines, to quantify the ability of information and

communication technologies, amongst others, to reduce the cost of recording of

phenotypes with little or no compromise in accuracy – greater accuracy of recording

is also possible.

Technological phenotypes

Technological phenotypes here refer to data that are (or could be)

automatically captured, although the information may not always be translated into

useful phenotypes for herd management and animal breeding. Arguably one of the

greatest technological advances for phenotyping in dairy cattle was electronic milk

recording. Although currently the milk samples taken are used predominantly for the

analysis of milk fat, protein, and lactose composition through exploitation of mid-

infrared (MIR) spectroscopy analysis of the milk samples, the MIR spectrum can also

be used in quantification of other phenotypes. Mid-infrared spectroscopy is the

method of shining light through individual cow and bulk milk tank samples,

measuring the absorbance pattern of the light in the mid-infrared region, and using the

wavelength absorption patterns to predict different milk quality characteristics.

Evidence exists documenting the ability of MIR analysis of milk to predict different

milk quality attributes (Soyeurt et al., 2011, 2012; Dal Zotto et al., 2008; De Marchi et

al., 2009) as well as other performance traits such as energy balance (McParland et

al., 2011) and methane emissions (Dehareng et al., 2012). Because MIR is undertaken



on all milk samples from milk recorded cows (as well as herd bulk milk tank

samples), once the prediction equations are developed, the derived phenotypes are

available at no extra cost. Research on other phenotypes that can be derived from the

milk MIR are also underway (http://www.optiMIR.eu). Milk, because available daily

for all lactating animals, is an excellent source of information. Other phenotypes

derived from milk samples include milk electroconductivity and its association with

udder health (Norberg, 2005), progesterone profiling for detection of ovulation and

pregnancy, and serial measures of serological response to Mycobacterium avium

paratuberculosis (MAP) as an indictor of presence of MAP in the herd.

Other technological advances, not associated with milk sampling, but of huge

importance in dairy production are pedometers (Roelofs et al., 2005) and their

association with oestrus (and possible health), video image analysis of carcasses as a

predictor of meat yield (Pabiou et al., 2010), near infrared spectroscopy or Raman

spectroscopy as predictors of meat quality (Prieto et al., 2009), and many more.

The main advantage of technological phenotypes is the generally low running

cost once the initial capital investment of purchasing and calibrating the technology is

overcome; an additional advantage is the objectivity associated with the recording of

the data assuming it is correctly calibrated. Technology is rapidly advancing and

greater collaborations between animal scientists and technologists and engineers must

be encouraged. For example, putting in place a system that includes: 1) pedometers,

2) in-line milk monitoring, and on exiting the milking parlour, 3) automatic weighing

and while weighing cameras (possibly infra-red based) take video/still images of the

4) lumbar processes, 5) udder and 6) hooves to quantify and detect BCS, mastitis, and

lameness, respectively while 7) pressure pads in the weighing crate also measure

lameness. Based on decision rules set up, the cow can automatically be drafted for

later inspection.

The main disadvantage of technological phenotypes is the cost of development

and where necessary the calibration on a sufficiently sized sample population

representing the variation likely to be present in the population.

Of increasing interest internationally is feed efficiency (Berry and Crowley,

2012). Although gross feed efficiency is (indirectly) included in many national dairy

cattle breeding goals, including Ireland (Berry et al., 2007), net feed efficiency ideally

requires measures of feed intake (and energy sinks) or some indicator traits of net feed

efficiency directly. Feed intake is related to feeding duration (Basarab et al., 2011)

http://www.optimir.eu/


and because most cows are electronically identified during milking, positioning

sensors above the feed face can potentially be a very useful method to quantify the

duration of feeding and therefore predicting feed intake; not measured here is feeding

rate although instruments (yet still cumbersome) are available to measure bite rate

(Prendiville et al., 2010). In grazing animals, algorithms based on information

generated by pedometers can be used to predict duration of grazing and therefore feed

intake. Information can be downloaded from the pedometers on entry to the milking

parlour. Many other possible technological advances exist such as monitoring of

rumen conditions by using sensor and communication technology in rumen boluses or

monitoring of congregation of cows (or bulls with cows) through the use of GPS

technology to identify cows in oestrus.

Statistical phenotypes

Genetic evaluations use best linear unbiased prediction (BLUP) which is a

procedure to estimate genetic merit (and other random effects) of animals while

simultaneously adjusting for systematic environmental effects. Likewise, this method

estimates fixed effects (BLUEs) while simultaneously adjusting for differences in

genetic merit. Although some fixed effects (e.g., parity) are routinely monitored for

biological plausibility, other fixed effects like contemporary group, are discarded.

However, effects like herd-year (i.e., contemporary group) can provide useful

benchmarking statistics for producers since they are adjusted for genetic effects. Such

information is already used in the evaluation of male fertility and performance of AI

technicians in Ireland (Berry et al., 2011a).

Temporal analysis of fixed effects can be used to: 1) identify possible

deteriorations in performance over-time, and 2) plan for future herd management such

as feed budgeting given futuristic milk production and therefore dietary energy

requirements. Test-day models provide a useful tool in herd management (Bastin et

al., 2009) especially where longitudinal data, such as milk yield and composition as

well as heifer growth rates, exist. Herd-level longitudinal profiles across a given

trajectory can be modelled as random components in the random regression mixed

models. As well as providing information on systematic trends across lactation they

can also be used to detect aberrant test-days which may be indicative of, for example,



weather conditions at the time but could also be due to short-term changes in

management such as deterioration in feed quality. The ability to predict futuristic

performance, as well as being useful for the individual producers in herd

management, also provides useful information for milk processors and beef abattoirs

in predicting upcoming supply patterns.

The advantage of statistical phenotypes is that they are already generated

during genetic evaluations and are therefore freely available. More detailed statistical

modelling of data may have to be undertaken, especially for serial data, to maximise

its usefulness, but an investment in these models is also likely to improve the genetic

evaluations. Moreover, investment will be needed to develop the appropriate

presentation methods of the model solutions to producers and explaining how these

data can be used in day-to-day herd management.

Genomic phenotypes

Animals are generally managed based on the information available at that

time. For example, cows not detected in oestrus after a voluntary waiting period post-

calving, may be inspected. Similarly mastitis and lameness will be treated when

observed or cows may be fed according to production. Individual animal genomic

information will undoubtedly soon become an additional phenotype exploited in day-

to-day herd management; genomic information through direct genomic values already

contributes to herd breeding strategies. Such personalised management (also

commonly termed personalised medicine) based on individual genomic information is

already being discussed in the human population. For example mutations in BRCA1

and BRCA2 genes in humans are implicated in certain forms of cancer in humans

(King et al, 2003) and knowledge of the sequence of both genes in individuals can be

exploited in more closer and frequent monitoring of individuals or the use

prophylactics treatments. Similarly, knowledge of the genome sequence of individual

animals can be used to potentially alter the decision rules implemented in the

computer algorithms for detection of diseases placing more stringent rules on animals

with greater genomic risk of infection. Furthermore animals with a poor genomic

sequence for natural return to oestrus may be intervened earlier post-calving.



Genomic sequence information obviously has a considerable impact on selection of

animals for parents of the next generation.

In the future pharmacogenetics (impact of genetic variation to response to

medication) may be used to tailor the treatment of disease, or even the vaccination

strategy based on information on the animal genome. Furthermore, crossbreeding is

increasing in interest in some dairy cattle populations, primarily because of the

exploitation of heterosis due to the suppression of undesirable deleterious recessive

alleles because of the presence of a dominant allele (dominant hypothesis) and/or the

advantage of a heterozygote due to overdominance (overdominance hypothesis).

Irrespective, knowledge of the genome sequence of an individual animal may be used

to generate measures of its general combining ability, and for individual matings

where genomic information is also available on the potential mate, a measure of the

specific combining ability (and an associated probability distribution function) can be

generated to guide selection and mating decisions to maximise heterosis and additive

genetic merit.

The main disadvantage with the use of genomic information as a phenotypic

tool is the cost of identifying and quantifying the relevant functional mutations. The

necessity for very large datasets, even for high heritability traits like stature, is clearly

evident in the human literature (Visscher, 2008), although population structure in

humans differ to dairy cattle. Nonetheless, large populations are still required and

international collaboration, where genotype by environment interactions are few, will

arguably be the best strategy to achieving the end goal.

“Next generation” phenotypes

Transcriptomics is the study of gene expression while metabolomics and

proteomics are the study of metabolites and protein, respectively. DNA in all cells are

identical but different complements of genes are expressed in different cells; for

example the eye colour gene(s) is not likely to be expressed in the genes in the feet of

an individual. Similarly, although an animal may have a favourable allele complement

of, for example, polymorphisms in fertility genes, they may not be transcribed (i.e.,

turned on) or may be lowly transcribed (i.e., lowly turned on). The transcript

abundance or the measure of how “active” a gene is can be determined by measuring



the quantity of the relevant mRNA (or metabolome or proteome) present in the

particular cell. Up until recently this was performed using microarrays for global gene

expression or by RT-PCR for individual gene expression profiles. However, next

generation sequencing technologies overcome some of the limitations of previous

methods with the added advantage of lower cost; the cost of sequencing will continue

to reduce as newer generation sequencing technologies develop.

Knowledge of the transcriptome, metabolome or proteome abundance within

cells, if accurately quantified, may result in greater heritability because of a

potentially lower contribution of residual variation (e.g., herd management such as

voluntary waiting periods for the derivation of fertility traits). Heritability estimates

for traits such as commencement of luteal activity (Berry et al., 2012a; Veerkamp et

al., 2000) tend to be greater than traditional estimates of heritability because of the

likely lower contribution of residual variation to the overall phenotypic variation.

One of the main difficulties however in the routine implementation of such

technologies is the limited availability of suitable biological tissues on which to

undertake the analysis. For example, udder biopsies would be required to generate the

transcriptome of mammary cells. However, Medrano et al. (2010) reported an almost

unity correlation between the transciptome of udder biopsies and mRNA isolated

directly from the somatic cells in milk thereby eliminating the requirement of udder

tissue biopsies although the milk was collected a short period after milking (Medrano

et al., 2010); replication studies are nonetheless, lacking.

An emerging field of phenotyping is metagenomics which in dairy cattle is

generally confined to the rumen metagenome. Metagenomic analysis of the rumen

microbial populations can provide an inexhaustible insight into the prokaryotic

ecosystem within the rumen. Metagenomic approaches are now more feasible with the

development of second and third generation sequencing reducing the cost of

sequencing. However, their direct usefulness within national breeding strategies is

questionable although the information generated from metagenomic analysis can be

used in prioritising indicator traits, more amenable to routine recording, for further

investigation.

Experimental phenotypes



Precise estimates of genetic parameters such as heritability estimates and

genetic correlations with other traits, are necessary to estimate the response to

selection for different breeding goals. An alternative approach is to generate two (or

more) experimental groups of animals, each with sufficient genetic diversity, but

divergent for the breeding goal under investigation. The animals can be deeply

phenotyped, especially for traits not amenable to routine collection nationally. Least

squares means of the divergent groups of animals can be used to quantify any

deleterious consequences of the breeding goal. Unfavourable genetic trends may

subsequently be rectified in the breeding goal. Although the trait itself may not be

readily recorded nationally (why it was a phenotype of interest in the experiment),

indicators of the trait, often referred to by some as “biomarkers” may be identified in

the experiment. Often complicated indicators, especially at the omic level, are

investigated by scientists. However, simpler possible indictors are often overlooked;

for example animal girth may be a good measure of feed intake necessary for the

inclusion of net feed efficiency in breeding goals. Caution however must be given to

the experimental design (especially decision rules) and statistical analyses used to

elucidate the effects in such experiments.

An additional approach, although non amenable to deep phenotyping, is to

evaluate the change in a given trait on commercial farms per unit change in genetic

merit for that trait. This can be undertaken across environments. However, estimates

of genetic merit of the animals in the “test population” must not be derived from their

phenotypic information so that no environmental covariance exists within the

experimental design. The results can be a very useful tool in convincing stakeholders

that genetic evaluations are accurate. Ramsbottom et al. (2012) related mean herd EBI

(i.e., the Irish national dairy cattle breeding objective) to annual profit per cow –

equivalent to profit per lactation in seasonal calving herds – across 1,131 Irish dairy

herds. The EBI is profit per lactation and is expressed on a predicted transmitting

ability. Therefore regression of profit per lactation on EBI was expected to be €2;

Ramsbottom et al. (2012) reported a regression coefficient of €1.94 (se=0.42) clearly

showing that differences in genetic merit for EBI were reflected in differences in

profitability in Irish dairy farms. Ramsbottom et al. (2012) also showed that genetic

merit for both milk production and fertility were contributing to this profit. Finally,

another “experiment” to aid in convincing producers of the benefits of genetics is,

during farm visits, to separate approximately 10 cows of the highest and lowest



genetic merit for the overall breeding goal. The mean difference in performance

among the cows should be obvious, but there will be variation within group and may

even be some overlap especially for the low heritability traits. Producers being able to

physically see the differences due to genetics can aid in uptake.

Given the increase in genetic gain expected with genomic selection,

experimental or sentinel herds are critical to quickly identify possible unfavourable

genetic trends in some difficult to measure traits. Moreover, selection indexes assume

the response to selection is linear. However, the response to selection may (and more

than likely will) differ depending on genetic merit of the animal and how it interacts

with the environment. This is especially true in grazed grass based systems of milk

production and this hypothesis can be tested in controlled experiments with factorial

deigns of genotype by system of production. The main disadvantage of controlled

experiments is the cost associated with running the experiments; however, the

financial repercussions of not embarking on such an insurance policy can be many

multiples greater.

Conclusions

Routine access to low cost, accurate phenotypes across a range of important

traits remains key to sustainable genetic gain in dairy cattle. Many different types of

phenotypes exist but also many different technologies now exist (some requiring just

slight modifications) to record the necessary information. Not covered in this article,

but of increasing importance are decision support tools, that combine the plethora of

data from the different sources, summarises it into an easily understandable format

and provides advice on remedial action to be taken, if necessary, to increase herd

performance and profitability.
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