

Maximizing Genetic Progress in the New Age of Genomics

By Robert Fourdraine, PhD Vice President DHI Operations AgSource Cooperative Services

The Role of Genetics

- Focus before Genomics and Sexed Semen:
 - Selecting AI Sires with traits to improve herd deficiencies
 - Improve genetics of next generation
 - Purchase animals/embryos of high genetic merit
- Focus after Genomics and Sexed Semen:
 - Selecting AI Sires with traits to improve herd deficiencies
 - Improve genetics of next generation
 - Improve current herd genetics
 - Breeding to AI beef cattle
 - Speed up genetic progress by breeding and sell low genetic merit animals

AgSource Products

- Genetic Summary Report
 - Analysis and Monitoring Tool
 - Summary of genetic traits for the current herd
 - Trends of genetics by year of birth
 - Trends of genetic traits for the herd by test date
 - Analysis of phenotypic data as it relates to genetic information
 - Inbreeding analysis and predominant genetics in the herd
 - Trends of future genetics by evaluating genetic traits for service sires and young stock

AgSource Products

- Genetic Selection Guide
 - Decision Support Tool to improve breeding and culling decisions and maximize genetic progress
 - Cows
 - Heifers
 - Unborn progeny
 - Use NM\$

Current Herd Genetics

- Herd Values
- Benchmarking
 - Distribution
 - Top Genetics

A Genetic	c Summary - Active Cows & Youngstock													
			Cows					Youngsto	ock					
			Percent	ile				Percent	ile					
	Your Herd	20th	50th	80th	Avg 80th	Your Herd	20th	50th	80th	Avg 80th				
Number	2595		398010			2187		364170						
NM\$	127	-67	54	170	246	273	48	175	294	370				
CM\$	128	70	56	177	257	281	50	181	305	384				
FM\$	124	-65	49	159	231	255	40	160	272	344				
PTA Milk	246	-372	34	444	722	472	-121	246	600	842				
PTA Fat	12	-14	2	18	29	26	-1	14	28	38				
PTA Fat %	0.01	-0.06	0.00	0.07	0.12	0.03	-0.04	0.02	0.08	0.11				
PTA Pro	7	-9	2	12	20	17	0	10	20	26				
PTA Pro %	0.00	-0.02	0.00	0.03	0.05	0.01	-0.02	0.01	0.04	0.05				
PTA SCS	2.96	3.07	2.96	2.87	2.81	2.90	3.02	2,93	2.84	2.78				
PTA PL	1.2	-0.9	0.5	2.0	2.9	2.3	-0.1	1.5	3.0	3.9				
PTA DPR	0.2	-0.8	0.4	1.5	2.3	0.5	-0.4	0.6	1.7	2.5				
Avg Inbred %	6.0		5.6			6.5		5.9						
Avg Fut Inbred %	6.2		6.0			6.5		6.3						

Inbreeding Trend

- Pedigree or Genomic average by year of birth
- Comparison with Breed trends
- Production losses due to inbreeding

National Ranking of Genetics

- Ranking of current genetics
- NM\$
- National comparison

Genetic Trend by Year of Birth

- Measure of genetic progress within the herd
- Benchmark with AgSource herds

Genetic Trend

- Measure of herd level genetics
- Impacted by:
 - Breeding
 - Culling
- Benchmarked against top herds

Impact of Sexed Semen Use

- Comparison of genetics for:
 - Conventional breeding
 - Breeding with sexed semen
 - Non AI breeding
- Evaluate genetic differences and phenotypic impact

F	Semen Type	e Analysis - Act	ive Cows	
		Conventional	Sexed	Natural / Unk
Nu	m Cows	2244	255	153
NM	\$	139	83	-74
СМ	\$	140	79	-74
FM	\$	134	93	-73
ME	Milk	32731	32578	31701
ME	Fat	1256	1187	1165
ME	Protein	982	966	950
LSS	SCC	2.0	2.6	2.5

Use of Genomic Testing

- Comparison between conventional genomic test results
- Actual measure of inbreeding %
- Risk for future inbreeding

G	Genomic E	valuatio	on Analysis	s - Activ	e Cows an	d Youn	gstock
		Tra Cows	aditional Youngstock	Genor Cows	mic Tested Youngstock	lm Cows	puted Youngstock
Nur	nber	1034	22	1540	1889	19	43
NM	\$	111	186	138	264	133	333
СМ	\$	108	187	142	271	131	343
FM	\$	118	185	128	246	140	310
Avç	JInbr %	5.9	6.3	6.0	6.5	6.9	6.8
Avç	J Fut Inbr %	6.2	6.4	6.3	6.5	6.5	6.5
Ger	n Avg Inbr %			4.6	5.1	7.0	0.0
Ger	n Fut Inbr %			6.7	7.0	4.9	0.0

Impact of Genetics

- Breakout by NM\$ Quartiles
- Are higher NM\$ cows outperforming lower NM\$ cows

H Genetic and Phenotypic Trend by NM\$ Quartile - Active Cows													
Quartile Num Cows NM \$ CM \$ PTA Milk PTA Fat PTA Pro PTA SCS PTA DPR MEMI													
1	627	308	313	604	30	19	2.91	0.6	33631				
2	626	173	177	305	16	10	2.94	0.4	32974				
3	626	84	85	173	8	5	2.98	0.1	32527				
4	626	-34	-38	-40	-4	-3	3.01	-0.2	31760				
									$\overline{}$				

ME Milk	ME Fat	ME Pro	LSSCC	Days Open	TCI©
33631	1321	1008	1.8	135	187
32974	1277	994	2.0	135	228
32527	1225	976	2.1	133	142
31760	1175	944	2.4	146	-12

Future Risk of Inbreeding

- Risk of future inbreeding
- Predominant blood lines based on sire and grand sires
- Assist in selection of future breeding sires

I M	ost Prevalent Genes - Top	Sires bas	ed on	Cows ar	nd Young	stock
Sire Nam	ie	Sire NAAB	Total Genes	# Daughters	# PG Daughters	# MG Daughters
PLANET	(007HO08081	155.25	80	314	147
SHOTTLE	Ξ (029HO12209	96.75	5	368	9
O MAN	(007HO06417	92.25	3	338	25
GOLDWY	'N 2	200HO03205	89.25	1	350	5
SHAMRO	CK (007HO10849	69.75	93	66	27
SUPER	(001HO08778	69.25	25	198	29
CROWN	(007HO09321	62.50	93	0	64
ROBUST	(007HO10524	60.25	22	191	6
MAYFIEL	D (007HO11283	59.75	112	0	15
MAN-O-M	IAN (014HO04929	58.25	6	213	8
BOLTON	(029HO11111	58.25	9	172	43
SHOT	(007HO09222	49.25	80	0	37

or Reage

Current Inbreeding Level

- Inbreeding Distribution
- Measure of mating program effectiveness to manage inbreeding
- Comparison with AgSource herds

Sire Expression

• Genetic and Phenotypic performance of offspring

к	Sire Expression - Top Sires	based on Numbe	er of Lactating D	aughters						
Sire	Name	Sire NAAB	# Daughters	NM \$	CM\$	FM\$	ME Milk	ME Fat	ME Pro	LSSCC
CRO	WN	007HO09321	92	122	135	91	33544	1295	1048	1.8
PLAN	IET	007HO08081	74	249	242	266	34533	1206	1016	2.6
TRIG	GER	029HO13846	55	169	175	153	33784	1278	1018	2.1
JAMI	/IER	029HO10483	52	91	89	94	33459	1262	999	2.2
PALE	RMO	014HO05411	48	94	102	73	33428	1285	1021	2.0
ALEX	ANDER	007HO08221	47	85	80	98	31892	1256	952	2.6
SHAI	MROCK	007HO10849	46	263	253	287	32851	1285	960	1.5
BEAG	CON	029HO13366	43	198	194	207	35165	1331	1046	2.2
SHO	Г	007HO09222	43	136	131	145	31143	1240	919	1.7
BRO	NCO	007HO08747	42	219	215	227	36035	1285	1069	2.4
ALTA	ΟΤΤΟ	011HO09317	41	159	177	117	32898	1268	1022	2.5
ALTA	ROSS	011HO09703	38	89	101	62	31611	1209	978	2.2

Service Sire Genetics

- Measure of Selection of Sires
- Comparison against Top AgSource Herds

Future Genetics

- Genetics of the next generation
- Selection of replacement animals

М	Genetic	Summary Act	ive Youngstock b	oy Age Gr	oup							
Age	Group	# Heifers	# Pregnant	NM \$	CM \$	FM \$	PTA Milk	PTA Fat	PTA Pro	PTA SCS	PTA PL	PTA DPR
< 3 mo 246		0	349	357	328	645	34	23	2.90	2.9	0.3	
3 - 5	i mo	252	0	310	318	290	551	30	20	2.90	2.6	0.4
6 - 8 mo		340	0	294	300	277	535	27	18	2.88	2.6	0.5
9 - 1	1 mo	292	0	283	291	263	478	26	17	2.88	2.5	0.4
12 -	14 mo	220	34	285	293	268	486	28	18	2.91	2.5	0.4
15 -	17 mo	333	247	252	259	235	444	23	16	2.92	2.2	0.6
18 -	20 mo	295	277	205	214	183	319	19	13	2.92	1.7	0.5
> 20	mo	208	205	212	217	200	309	20	11	2.93	1.8	0.6

Breeding for the Next Generation

С				Co	w Lacta			Pedigree		Dam Production								
							Avg Dev Fi	rom Herd	305 ME							Avg Dev Fr	om Herd	305 ME
Cntl	Barn Name	Visible	Carry ID	Lact	NM\$	Due	Mille	Eat	Des	Avg Days	Avg	Avg	Circ ID	MOSID	Dars ID	N.C.II.	Ent	-
			COWID	Num	Lat	Date	IVIIIK	rat	PIO	Open	LS	TCI®	Sile ID	MGSID	Damib	IVIIIK	га	Pro
2820	2820	2820	840003006805211	1	\$295 _{G2}	06-20	-296	173	22		1.6		7HO07853	7HO06417	988	7583	208	198
2794	2794	2794	840003006805185	1	\$266	02-04	8891	155	182		1.2		7HO08477	7HO08425	811	-4083	-142	-136
2808	2808	2808	840003006805199	1	\$291	03-29	2282	157	153		1.6		29HO11753	7HO05375	901	1218	109	26
1036	1036	1036	62650384	4	\$527 _{G1}	11-12	-488	41	13	176	2.7	2829	7HO06417	7HO06168	856	9802	64	253
1021	1021	1021	62650369	6	\$676 _{G1}	12-03	2951	360	115	110	1.3	1063	7HO06417	7HO05841	819			
2224	2224	2224	840003001083779	3	\$284	10-29	6513	139	79	109	1.7	4448	7HO09179	7HO05386	1397			
2796	2796	2796	840003006805187	1	\$249	05-12	682	-76	30		1.6		11HO07965	7HO06782	2100	3168	107	116
2800	2800	2800	840003006805191	1	\$399	05-20	7094	165	237		3.3		7HO08477	7HO07193	2116	3799	-6	95

С			Heifer Data					Dam Production Data								
									Avg Dev From Herd 305 ME							
Cntl Num	Barn Name	Visible ID Cow ID		Age (Yr-Mo)	Est NM\$	Due Date	Sire ID MGS ID		Dam ID	Lact Num	Milk	Fat	Pro	Avg Days Open	Avg LS	Avg TCI ®
3189	3189		840003008967522	0-11	\$372		7HO08221	7HO07536	2478	2	4081	103	134	82	1.5	3707
3132	3132		840003008967465	1-1	\$468		14HO04929	7HO06782	2071	2	-274	-29	-22	83	1.1	-240
3220	3220		840003008967553	0-10	\$331		14HO04929	7HO07596	2071	1	511	114	-9	77	4	
3218	3218		840003008967551	0-10	\$349		7HO09321	7HO08221	2685	1	364	59	-61	80	0.6	
3209	3209		840003008967542	0-10	\$381		1HO08778	7HO08190	2586	1	2999	-88	47		1.7	
3210	3210		840003008967543	0-10	\$420		1HO08778	1HO07235	2586	3	-3238	-101	-35	107	1.7	1231
3206	3005		8/1003008967539	0_10	\$3/3		7HO09321	7HO06758	2006	4	-1072	1/18	16	98	٨٩	3150

Maximizing your Genetic Returns

- Ranking unborn progeny on NM\$
- Minimize calf raising expenses

AN	umber o	f Calves	per Mont	h	(Using 1	(Using 1 month avg NM\$ for comparison)					В							
Month	Count	Avg NM\$	Month	Count	Avg NM\$	Month	Count	Avg NM\$	Quartile 1	This report shows the NM\$ values for progeny of cows that have been bred and								
Septen	nber 19	\$270	December	51	\$289	March	48	48 \$269 (2	confirmed pregnant, have NM\$ vet_it will	cow (Cal	f Dam N and Dam	M\$) doe tif avails	s not			
Octobe	r 53	\$288	January	47	\$303	April	20	\$284	Quartile	3	(denoted with *). Fu	ture offsp	ring where	either Si	ire or Da	m are n	nissing N	M\$ will
Novem	ber 57	\$298	February	39	\$323	May	22	\$320	Quartile 4	1	not receive an Est C	alf NM\$	value.					
С	Dam D	ata	1	Cal	f Data		İ		Pedigree				0	Dam Pr	oducti	on Dat	а	
										_		Avg Dev From Herd		rom Herd	305 ME			
Cntl Num	Barn Name	Visible ID	Calf Dam NM\$ *Est	Ca Sir NN	lf Est re Calf M\$ NM\$	Due Date (≤ 40)	Ca	alf e ID	Calf MGS ID		Calf Dam ID	Lact Num	Milk	Fat	Pro	Avg Days Open	Avg LS	Avg TCI®
2899	9 28	99 2899	\$299*	\$3	391 \$34	5 09-04	200H	005592	7HO09545	8	40003006805290	0						
2200	6 22	06 2206	\$226 g	i1 \$4	417 <u>\$32</u>	2 09-10	7H	009420	1HO07235	8	40003001083761	2	5877	292	176	208	2	3987
2128	3 21	28 2128	\$220 g	2	\$73 \$14	7 09-10	7H	O08190	1HO07235	8	40003001083683	3	4086	116	147	144	2	3140
2917	7 29	17 2917	-\$2*	\$!	503 \$25	1 09-15	76H	000581	7HO08190	8	40003006537154	0						
2554	4 25	54 2554	\$178 g	i1 \$6	679 \$42	9 09-17	7H	O10850	1HO09486	8	40003005138755	1	403	59	40	303	2	
2674	4 26	74 2674	\$220	\$4	460 \$34	0 09-17	7H	009107	7HO08221	8	40003005138875	1	1960	7	-18	127	1	
2953	3 29	53 2953	\$330*	\$4	467 \$39	9 09-20	7H	009321	7HO08165	8	40003006537190	0						
			11															

Conclusions

- Reviewing genetics performance is an annual task
- Past, current and future genetics
- Components of a successful genetic management program:
 - Sire Selection
 - Mating Program (manage inbreeding)
 - Inventory Management
 - Sexed vs conventional semen
 - Beef versus Dairy
 - Culling Decision
- Genomic testing = Better informed decisions

Questions?

THANK YOU!