

www.afimilk.com

Automated Daily Analysis of Milk Components and Cow Behavior Developing New Applications in The Dairy Herd

36th ICAR Session and Interbull Meeting 16-20 June 2008

Why Applications are Needed ?

- Herd size increasing
- Sensors range and diversity is rising
- => Quantity of data increasing (resolution & innovative)
- Benefit for the end users ? Appli
- ⇒ Research for developing applications is needed

Applicative Research in Firms What are The Options ?

- Applicative research ? R&D
- Research team Experts
- Academic institutes and Research centers

Two New Advanced Sensors

Afilab[™] - Milk analyzer lacksquare

- Pedometer+[™] Behavior meter

- Measures milk solids (fat, protein, lactose)
- Indication SCC, Blood
- Technology –Optical characteristics of light

scattering off matter

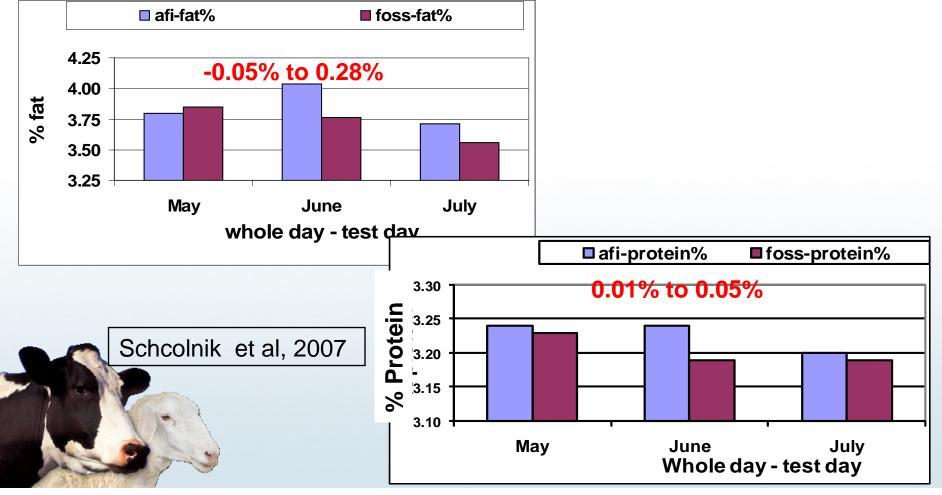
• On-line, In-line (each stall)

Concept – amplifying laboratory periodically tests

Field Study - Material & Methods The Heart of the Dairy Farm www.afimilk.com S.A.E. Research Application Team (Schcolnik et. al.)

- Large commercial dairy farm (~800 milking cows)
- May 2007 July 2007
- Analyzer data were recorded for each cow every milking
- Milk samples collected once a week analyzed for solids and SCC - Israeli Milk Central Laboratory (Combi Milkoscan[™], Foss)
- Blood samples for BHBA thrice weekly fresh cows (1-21 DIM)
- Statistic analysis JMP[®] 6, SAS

Derived Applications



- Control nutritional status herd and groups
- Individual feeding
- Predictions (diagnosis) metabolic diseases
- Follow ups dairies' milk payment
- Retrospective analysis
- Milk separation based on its quality
- Early detection of mastitis (under research)

 Milk components utilized with herd health program ? rapid detection nutritional changes => metabolic and reproduction problems (Eicher, 2004)

The Heart of the Dairy Farm

 High importance – Management where supplement of additional concentrate feeding is needed (pasture, fresh cows, non homogenous groups)

NRC 2001 formula:

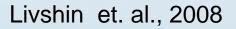
DMI (kg/day) = $(0.372*FCM^{0.75} + 0.0968*BW)*(1-e^{-0.192*(wol+3.67)})$

- Correlation between metabolic diseases and milk components
- Ketosis (NEB) Fat/Protein Ratio (FPR)> 1.35-1.50 (Heuer et. al., 1999)
- SARA FPR< 1.0 or more then 10% with fat < 2.5% (Tomaszewski and Cannon, 1993; Nordlund et. al., 2004)

FPR	BHBA>1.4 (31.3%*)				
	Sensitivity (%)	Specificity (%)			
>1.2	59.3	56.1			
>1.4	33.3	82.7			
>1.6	11.1	92.4			
>1.8	2.8	98.3			

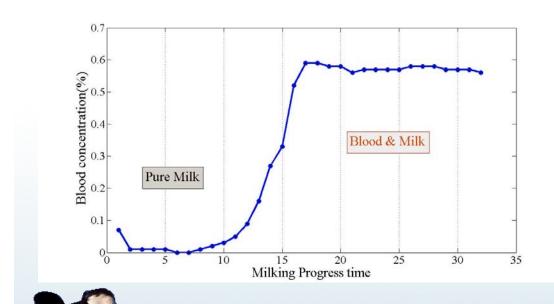
* % of cases with BHBA above threshold

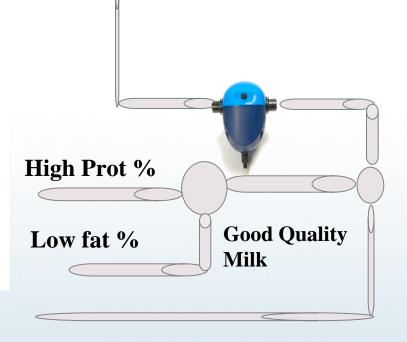
Schcolnik et. al., 2007



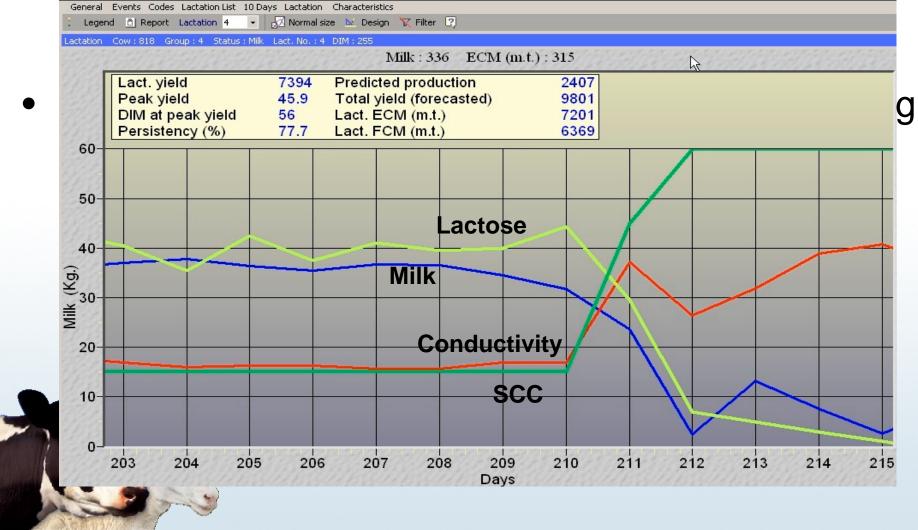
Predictions of Ketosis – Multifactorial Approach

FPR cut off	Model			
	FPR + 3 SHI* ²			
	Sensitivity	Specificity		
1.30	73.0	68.3		
1.35	69.6	71.7		
1.40	60.9	77.1		


- * SHI "Sound Health Indicators"
- ² Model FPR + activity, conductivity and urea (** 3/48, 125, 8.7, 17)



 Separation based on Protein%, SCC, presence of Blood



Blood, SCC

Mastitistic Case Report - Commercial Moshay Farm

- Control nutritional status herd and groups
- Individual feeding
- Predictions (diagnosis) metabolic diseases
- Follow ups dairies' milk payment
- Retrospective analysis
- Milk separation based on its quality
 - Farly detection of mastitis (under research)

- Records activity (steps/hr), Lying time, Lying bouts
- Technology 3 dimensional sensor
- Concept determine routine behavior of the animal and pinpoint exceptions
- Animal Welfare & Comfort indication

Materials and Methods

A.R.O. The Volcani Center (Maltz et. al)

<u>Study 1</u>

- Commercial dairy farm (550 MC)
- 1st trial lying behavior (12 MP)
- 2nd trial two different barns –
 free stall vs. no stall (8*2 PP)
- 3rd trial changed over 4
 - corres from each group
 - dent T-test

<u>Study 2</u>

- Volcani Center dairy farm
- 14 cows prior calving
- 5 kg concentrates feed (1kg*5) using CCSF
- Activity, lying and feeding behavior – recorded last 7 days prior calving
- T-test (each day vs. previous day)

- Animal Welfare & Comfort assessment
- Detecting calving time of dairy cows
- Heat detection under unfavorable condition (tie stall, heat stress)
- Define the optimal stocking density

Lying time (mean \pm SD) in between milking diurnal intervals of 8 cows in no stalls barn and in free stall barn


(activity = 100%) = > Stable parameter

Time interval	Lying Time (min)	
	No stall barn	
Morning (04:00-12:00)	157 ± 42 (29.4*)	
Noon (12:00-20:00)	118±50 (22.1)	
Night (20:00-04:00)	258±51 (48.4)	
* % from daily lying time	From Livishin et. al., 2005	

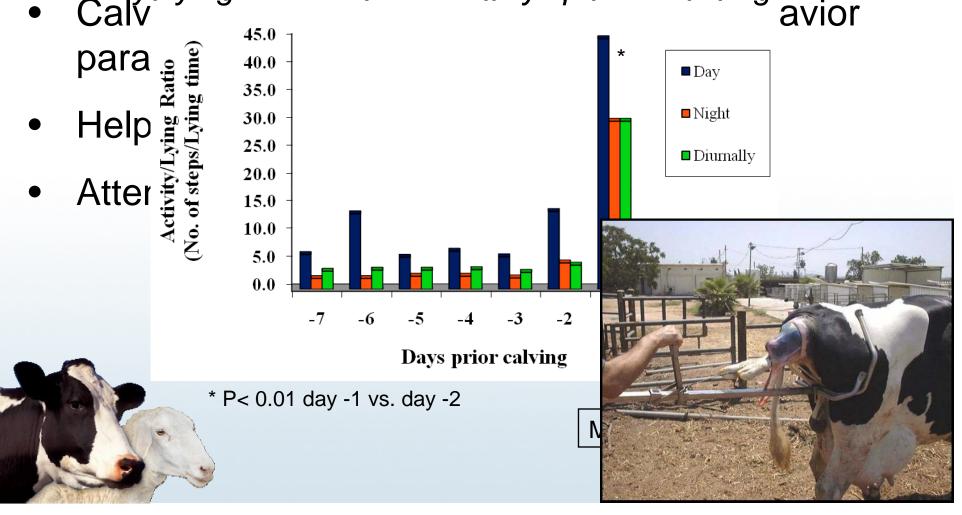
Animal Welfare & Comfort Assessment

Heat Stress (During Israeli Summer) – Case Report – Lying behavior Vs. Activity Whole Group Level – Commercial Moshav Farm

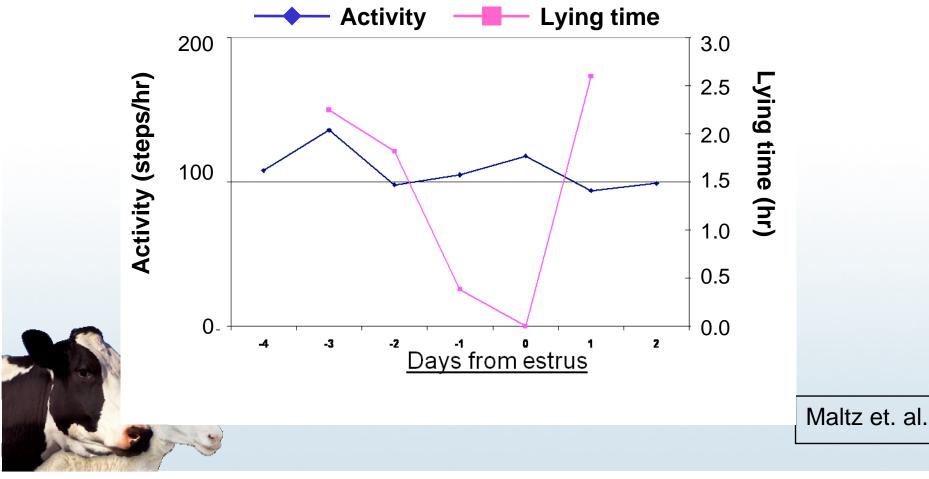
•Changing of housing managements different housing barns

Time	Period 1	Period 2	Period 1	Period 2
Interval				
	No stall	Free stall	Free stall	No stall
Morning	153 ± 41 ^{*a}	126 ± 55	120 ± 39*	178 ± 55 ^a
(04:00-12:00)				

* p<0.01 of the same cows when transferred from one barn to the other a p<0.01 between groups (4 cows) inhabiting different barns within period



From Livishin et. al., 2005


 Cows behavior change prior to calving *Activity/Lying ratio in the last 7 days prior to calving* - Calv

Heat Detection – Case Report – Changing only in Lying Behavior

- Animal Welfare & Comfort assessment
- Detecting calving time of dairy cows
- Heat detection under unfavorable condition (tie stall, heat stress)
- Define the optimal stocking density

- Interaction between large range of data from varied sensors (Milk meter, Weight scale, Self feeders)
- Developing innovative models
- Developing new applications and improving established ones
- Early detection and specify of health, fertility and welfare problems

Summary

- Modern farm Herd size increasing ? Amount and range of data increasing
- Sophisticated applications are needed
- Applied research is required
- Two new advanced sensors developed by S.A.E. Afikim
- The sky is the limit

THANK YOU

