

The importance of recording of AI data for the genetic systems

- the context of AI from service to genetic progress

Jan Philipsson¹ and Hossein Jorjani²
¹Dept. of Animal Breeding and Genetics, SLU, Uppsala, Sweden.
²Interbull Centre, SLU, Uppsala, Sweden

36th ICAR Session Niagara Falls, USA, 19 June, 2008

The changing role of Artificial Insemination

Al initially used only for

- Controlling veneral diseases
- Making cows pregnat

Breeding tool also for

- progeny testing
- genetic evaluation
- dissemination of genetic material

The changing role of AI as a breeding tool

- Development and use of frozen semen
- Recording and use of high capacity computers
- Expanded knowledge on genetics of fertility and its associations with production

Use of frozen semen - effects on breeding programs

Long time storage of semen

- Young bull schemes
 - collection use storage slaughter
- Lay-off bull schemes
 - wide-spread use after progeny testing
- •Trade of semen and globalization
 - heavy use of individual bulls with known and unknown characteristicsacross countries

Dramatic Internationalization of Dairy Cattle Breeding

- The Polish FAO-experiment with 10 HF-strains
- Heavy increase in international trade of semen

Rapid breed changes in 25 years

Friesian "Holsteinization" via N.A.

Braunvieh Brown Swiss via N.A.

Jersey N.Z., USA, Denmark

Ayrshire Scandinavia

(Red breeds)

Globalisation of breeding programs

- Semen and embryos available on world market of many breeds for many years
- Market forces very strong but gave no advice on what is best for individual countries
- Breeding values not comparable across countries
- Farmers and AI studs need objective information and breeding values comparable across countries
- Interbull evaluations developed for this purpose

Percentage of progeny tested bulls with foreign sire

Breed group	Birth year of bull			
	1981-1985	1986-1990	1991-1995	
Brown Swiss	67.3	57.4	64.9	
Guernsey	14.6	13.0	32.7	
Holstein		60.2	59.4	
Jersey	14.9	26.1	35.0	
Red Dairy				
Cattle	16.7	27.1	26.9	
Simmental	23.6	26.0	28.6	

Participation rate – routine evaluations No. of bull populations – April 2008

Breed	Produc- tion	Confor- mation	Udder health	Calving traits	Long- evity	Female fertility
RDC	11	8	10	5	9	6
BSW	9	7	8	4	6	5
GUE	6	4	5		5	4
HOL	25	21	23	9	19	16
JER	10	9	8		7	5
SIM	10		8		2	2

No. Pop. 71 49 62 18 48 38

Size of Operation

Breed	No. bulls	No. populations
RDC	12 016	11
BSW	7 707	9
GUE	927	6
HOL	101 742	25
JER	8 058	10
SIM	21 315	10

Production traits April 2008

Computerization of Al-records

- Monitoring fertility of individual bulls
 - Non-Return Rate (%NRR)
- Generates pedigree information
- Integrated data bases to be used for management information and research

Accurate and complete recording of inseminations and calvings necessary

Recording and integration of data important for Total Merit Indexes

- Herd-books integrated into the milk-recording scheme
 - many countries have different organisations for each activity; costly and less efficient!
- The Swedish Bull Index

 Total Merit Index

 Production

 Beef traits

 Female fertility

 Calving ease & stillbirths

 Udder conformation

 Body, feet & legs

 Temperament

 Resistance to mastitis and other diseases

 Longevity
- The computer checked identities and pedigrees enable genetic analyses of all traits
- Integration of cow data from different sources started already in the 1960's in Sweden
 - allowed early use of data for research to develop selection programs including fertility traits

Development of Al-services

Fewer/larger AI companies

- Multinational
- Private
- Farmer cooperatives

From technicians to herdsmen doing AI

- Employed technicians
 - accurate and complete recording
- Do it yourself Al
 - accuracy in recording?

Female fertility - a complex of interacting traits

Three categories of traits:

- Ability of virgin heifers to show visible estrus
- Ability of the lactating cow to resume the reproductive cycle post-partum and show visible heat
- Ability to conceive following insemination

Fertility in virgin heifers and lactating cows different traits - genetic correlation 0.6-0.7

Female fertility - different measures

- Indirect measures of conception rate:
 - Non Return Rate % (after e.g. 28, 56 days)
 - No. of inseminations per serviced animal
- Interval measures
 - Calving first ins.; Days open; Calving interval
- Other measures
 - Activity meters (pedometer)
 - Progesteron profiles

Female fertility shows.....

- low heritability: usual range 0.02 0.04
- but...
- large additive genetic variation!
- Large variation among daugher groups: 15-20 % in Conception rate
- Genetic stand. dev. 6-8% vs 8-10% for milk yield
- Large progeny groups for accurate BVs: 100-150 daus

Research shows

• Unfavourable genetic correlations between some functional traits and production

Clinical mastitis 0.3 - 0.4Female fertility 0.2 - 0.5

Angularity, dairyness (sharpness) show unfavourable genetic correlations to fertility (0.4 -0.6) in Holstein

Direct selection for female fertility necessary to avoid decline in fertility!

Research and empirical experience show

- Combined selection for improvement of both production and fertility is possible!
- The Swedish Bull Index
- Total Merit Index
- Production
- Beef traits
- · Female fertility
- Calving ease & stillbirths
- Udder conformation
- Body, feet & legs
- Temperament
- Resistance to mastitis and other diseases
- Longevity
- Total Merit Index with proper weights on functional traits a necessity for maintained health and fertility
- TMI-index selection result in 10-25% more economic gain than single trait selection for production

Average genetic correlations (r_g) across different Holstein populations

Trait	Populations	Mean r _g
Protein yield	25	0.84
Somatic cells	23	0.90
Clinical mastitis (only DFS, DNR)	2	-
Longevity	19	0.66
Direct calving ease	9	0.80
Maternal calving ease	8	0.77
Direct stillbirth	5	0.74
Maternal stillbirth	5	0.78
Interval calving-first ins.	7	0.90
Non-return rate	7	0.77
Days open/calving interval	8	0.86

Global genetic trends in female fertility differ between breeds!

- Global genetic trends for bull poulations can be calculated from the Interbull results
- Differences between breeds reflect the selection of sires to produce sons in the past 10-20 years
- Example of Holstein and Red Dairy Cattle breeds

Global trends in protein and female fertility for **Red Dairy Cattle bulls** International breeding values, all bulls Mean=100, SD=10, Data from Sep 2007 112 106 PROT 100 HC 94 CY CC 88 ΙT 82 76 1990 1995 2000 1985 PROT= Protein yield, HC=Heifer conception, CY=Cow re-cycling ability, CC=Cow

conception, IT=Interval traits (days open/calving interval)

Global trends in protein and female fertility for HOLSTEIN bulls

International breeding values, all bulls Mean=100, SD=10, Data from Sep 2007

PROT= Protein yield, HC=Heifer conception, CY=Cow re-cycling ability, CC=Cow conception, IT=Interval traits (days open/calving interval)

Conclusions

- Reliable recording of AI is crucial for
 - accurate pedigrees
 - opportunities for genetic analyses of all traits
 - opportunities for estimation of BVs and selection for female fertility
- Including female fertility in TMI with proper weight possible to avoid a continuous decline in fertility
- International evaluation of bulls for female fertility offers new opportunities for selection

