

Fourth ICAR Reference Laboratory Network Meeting

Niagara Falls - USA 16 June 2008

MA SC

ICAR Sub-Committee on Milk Analysis

Foreword

ICAR Reference Laboratory Network is now in existence for twelve years. It was established in order to constitute the basis for an international analytical quality assurance (AQA) system for milk recording. Many country members of ICAR took benefit of the network and the proficiency study schemes implemented for it to develop or improve their national AQA system, whereas others, which had none, may have the opportunity to implement one.

The first meeting of ICAR Reference Laboratory Network held in Interlaken in 2002 was the first opportunity for the members of the network to meet one another and have the possibility to establish links that could enable collaboration. In order to introduce the general scope of the network, an overview of analytical QA/QC systems in different ICAR member countries was given by several speakers. The valuable discussions and outcomes of the event triggered the interest to renew such a meeting at the occasion of every biennial ICAR Sessions. So was done in Sousse-Tunisia at the 34th ICAR Session in May-June 2004, where were dealt different issues on small ruminant milk analysis, method evaluation and ICAR interlaboratory proficiency studies, then, at the 35th ICAR Session in Kuopio-Finland in June 2006 where was introduced the ICAR certification policy, reference system and centralised calibration approaches and the discussion on accuracy needed for milk recording testing.

Year 2006 was identified as the end of the first period of the implementation/development of the AQA system of ICAR after ten years have passed from the launching of the laboratory network and twelve from the start-up of the implementation programme. From Kuopio, it as decided to produce practical guidances and tools in order to facilitate the work of reference and routine laboratories and harmonise practices in ICAR countries. This is the objective of the present meeting in Niagara Falls to present and detail what can be proposed for use to laboratories and how they can benefit of the network structuring model proposed by ICAR. Examples existing in different countries of three continents serve to illustrate and confirm the interest of pieces of theory and procedures prior presented in a first part.

We sincerely hope that the following contents can meet the interest of the members of the network and ICAR organisation members and help in further optimisation in analytical organisation and practices.

Poligny, 27th August 2008

Olivier Leray Chair of ICAR Sub-Committee on Milk Analysis

CONTENTS

	page
List of participants	4
Update on ICAR Reference Laboratory Network – Evolution since 1996 Olivier Leray Actilait/Cecalait, Poligny, France	6
ICAR AQA strategy – International anchorage and harmonisation Olivier Leray Actilait/Cecalait, Poligny, France	20
Interlaboratory reference system & centralised calibration - Pre-requisites and standard optimum procedures Olivier Leray	34
Actilait/Cecalait, Rue de Versailles, BP 70129, F-39802 Poligny Cédex, France The way to reference systems and centralised calibration for milk recording testing – Present status in Germany Christian Baumgartner Milchpruefring Bayern e.V., Wolnzach, Germany	52
Reference system and centralized calibration for milk recording testing in Argentina Roberto Castañeda INTI Lácteos. Buenos Aires, Argentina	59
Reference system and centralised calibration for milk (payment) testing David Barbano Cornell University, Department of Food Science, Ithaca, USA	74
Assessment of Lab Performance and Analytical Equivalence in Milk Testing in North America Paul Sauvé Canadian Lab Services, Ottawa, Canada	87
Discussion and conclusion	100

List of participants

First name	Last name	Organisation	Country
Joel	Amdall	AgSource/CRI	United States
Tove	Asmussen	Lattec I/S	Denmark
David	Barbano	Cornell University	United States
Julie	Barnes	Washington DHI	United States
Catherine	Bastin	Gembloux Agricultural University	Belgium
Christian	Baumgartner	Milchprüfring Bayern e.V.	Germany
Rick	Bealer	Southern Counties DHI	United States
Pierre	Broutin	Bentley Instruments Inc.	France
Pierre	Broutin	Bentley Instruments	France
Pavel	Bucek	Czech Moravian Breeders Corporation, Inc	Czech Republic
Roberto	Castañeda	INTI - LACTEOS	Argentina
Brian	Corrigan	Valacta	Canada
Kent	Crandall	DHI Computing Service, Inc	United States
Tony	Craven	National Milk Recording	United Kingdom
Joseph	Crettenand	Swiss Red & White Cattle Breeders Fed.	Switzerland
Carol	Decker	Fox Valley DHI Lab	United States
Tom	DeMuth	AgSource/CRI	United States
João	Dürr	Universidade de Passe Fundo	Brazil
Jose Julian	Etcheverry	Cooperative Colanta LTDA	Colombia
Mary	Fogal	Universal Lab Services	United States
Steve	Frank	United DHIA	United States
Travis	Freeman	CanWest DHI	Canada
Mickael	Gallenberger	Gallenberger Dairy Record	United States
Andreas	Georgoudis	Holstein Association of Hellas	Greece
Peter	Groeneveld	Delta Instruments	Netherlands
Jere	High	Lancaster DHIA	United States

JoannaJaroszewskaNational Animal Breeding CentrePolandSteenKold-ChristensenFoss Analytical A/SDenmarkJohnKomarnickiCanWest DHICanadaRachidKouaouciValactaCanadaMartKuresooAnimal Recording Centre, Milk Analysis LabEstoniaPatriciaLabacaINTI - LACTEOSArgentinaOlivierLerayCecalait / ActilaitFranceMurilNiebuhrMNDHIA Zumbrota LaboratoryUnited StatesTonyNunesTulare DHIAUnited StatesJuleeO' ReillyDHI Cooperative, IncUnited StatesSilviaOrlandiniLaboratorio Standard Latte - AIAItalyAriadnaReyesHolstein de Mexico A.C.MexicoJohnRhoadsEastern Lab ServicesCanadaFranzSchallerlZARAustriaMarkSchweisthalUSDAUnited StatesGavinScottSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumBradSpeissMFC Testing & Research, IncCanadaDaveSukupHeart of America DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompson<	First name	Last name	Organisation	Country
JohnKomarnickiCanWest DHICanadaRachidiKouaouciValactaCanadaMartKuresooAnimal Recording Centre, Milk Analysis LabEstoniaPatriciaLabacaINTI - LACTEOSArgentinaOlivierLerayCecalait / ActilaitFranceMurilNiebuhrMNDHIA Zumbrota LaboratoryUnited StatesTonyNunesTulare DHIAUnited StatesJuleeO' ReillyDHI Cooperative, IncUnited StatesSilviaOrlandiniLaboratorio Standard Latte - AIAHakicoJohnRoesHolstein de Mexico A.C.MexicoJohnSauvéCanadian Laboratory ServicesCanadaFranzSchallerlZARAustriaGavinSchweisthalUSDAUnited StatesGavinSoyeurtGembloux Agricultural UniversityMexi ZealandHeileneSoyeurtGembloux Agricultural UniversityBelgiumFraduStonerLancaster DHIAUnited StatesDavinStonerLancaster DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesChrisYander WoudeHigh Desert Dairy Lab, IncUnited StatesGimonVander WoudeHigh Desert Dairy Lab, IncUnited States	Joanna	Jaroszewska	National Animal Breeding Centre	Poland
RachidKouaouciValactaCanadaMartKuresooAnimal Recording Centre, Milk Analysis LabEstoniaPatriciaLabacaINT - LACTEOSArgentinaOlivierLerayCecalait / ActilaitFranceMurilNiebuhrMNDHIA Zumbrota LaboratoryUnited StatesTonyNunesTulare DHIAUnited StatesJuleeO' ReillyDHI Cooperative, IncUnited StatesSilviaOrlandiniLaboratorio Standard Latte - AIAItalyAriadnaReyesHolstein de Mexico A.C.MexicoJohnSauvéCanadian Laboratory ServicesCanadaPaulSauvéCanadian Laboratory ServicesCanadaGavinSchulerlJOEAMexicoGavinSourtSalTL Dairy LaboratoryNew ZealandHeiheneSoyeurtGembloux Agricultural UniversityBelgiumFradSukupHart of America DHIAUnited StatesDavinSukupHeart of America DHIAUnited StatesChrisThompsonUniversity GrentuckyUnited StatesHarrievan den BigaanUniversity of KentuckyUnited StatesGimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesGimonVander WoudeKigh Desert Dairy Lab, IncUnited StatesGimonVander WoudeKigh Desert Dairy Lab, IncUnited StatesDavinVander WoudeKigh Desert Dairy Lab, IncUnited StatesGimonVander WoudeKigh	Steen	Kold-Christensen	Foss Analytical A/S	Denmark
MartKuresooAnimal Recording Centre, Milk Analysis LabEstoniaPatriciaLabacaINT1 - LACTEOSArgentinaOlivierLerayCecalait / ActilaitFranceMurilNiebuhrMNDHIA Zumbrota LaboratoryUnited StatesTonyNunesTulare DHIAUnited StatesJuleeO'ReillyDHI Cooperative, IncUnited StatesSilviaOrlandiniLaboratori Standard Latte - AIAItalyAriandnaReyesHolstein de Mexico A.C.MexicoJohnRhoadsEastern Lab ServicesUnited StatesPaulSchulerZARAustriaMarkSchulerJODAUnited StatesGavinScotuSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumFranzStonerLancaster DHIAUnited StatesFardStonerLancaster DHIAUnited StatesChrisThompsonIniversity Christitati UniversityUnited StatesFardeSukupHeart of America DHIAUnited StatesChrisThompsonJoinversity ChristitatiationUnited StatesFarrievan den BigaatQip NVNetherlandsFarrieVander WoudeHigh Deser Dairy Lab, IncUnited StatesFarrieVander WoudeCip Niversity Lab, IncUnited StatesFarrieVander WoudeKip Deser Dairy Lab, IncUnited StatesFarrieVan de RiginaCip Niversity Lab, Inc <td>John</td> <td>Komarnicki</td> <td>CanWest DHI</td> <td>Canada</td>	John	Komarnicki	CanWest DHI	Canada
PatriciaLabacaINTI - LACTEOSArgentinaOlivierLerayCecalait / ActilaitFranceMurilNiebuhrMNDHIA Zumbrota LaboratoryUnited StatesTonyNunesTulare DHIAUnited StatesJuleeO' ReillyDHI Cooperative, IncUnited StatesSilviaOrlandiniLaboratorio Standard Latte - AIAItalyAriadnaReyesHolstein de Mexico A.C.MexicoJohnRhoadsEastern Lab ServicesUnited StatesPaulSauvéCanadian Laboratory ServicesCanadaFranzSchallerlJSDAUnited StatesGavinScottSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumBradStorerLancaster DHIAUnited StatesDarvinStonerLancaster DHIAUnited StatesChrisThompsonUniversity GentuckyUnited StatesChrisNompsonUniversity GentuckyUnited StatesFarrievan den BigaatQip NVNetherlandsSimonVander WoudeHigh Deser Dairy Lab, IncUnited StatesGimonVander WoudeKigh Deser Dairy Lab, IncUnited States	Rachid	Kouaouci	Valacta	Canada
OlivierLerayCecalait / ActilaitFranceMurilNiebuhrMNDHIA Zumbrota LaboratoryUnited StatesTonyNunesTulare DHIAUnited StatesJuleeO' ReillyDHI Cooperative, IncUnited StatesSilviaO'I andiniLaboratorio Standard Latte - AIAItalyAriadnaReyesHolstein de Mexico A.C.MexicoJohnRhoadsEastern Lab ServicesUnited StatesPaulSauvéCanadian Laboratory ServicesCanadaFranzSchallerlZARAustriaMarkSchweisthalUSDAUnited StatesGavinScottGembloux Agricultural UniversityBelgiumHeièneSoyeurtGembloux Agricultural UniversityBelgiumDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BigaanQip NVNetherlandsSimonVander WouteHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHIUnited States	Mart	Kuresoo	Animal Recording Centre, Milk Analysis Lab	Estonia
MurilNiebuhrMNDHIA Zumbrota LaboratoryUnited StatesTonyNunesTulare DHIAUnited StatesJuleeO' ReillyDHI Cooperative, IncUnited StatesSilviaOrlandiniLaboratorio Standard Latte - AIAItalyAriadnaReyesHolstein de Mexico A.C.MexicoJohnRhoadsEastern Lab ServicesUnited StatesPaulSauvéCanadian Laboratory ServicesCanadaFranzSchallerlZARAustriaMarkSchweisthalUSDAUnited StatesGavinScottSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumBradStonerLancaster DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BigaanQlip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WateCanWest DHIUnited States	Patricia	Labaca	INTI - LACTEOS	Argentina
TonyNunesTulare DHIAUnited StatesJuleeO' ReillyDHI Cooperative, IncUnited StatesSilviaOrlandiniLaboratorio Standard Latte - AIAItalyAriadnaReyesHolstein de Mexico A.C.MexicoJohnRhoadsEastern Lab ServicesUnited StatesPaulSauvéCanadian Laboratory ServicesCanadaFranzSchallerlZARAustriaMarkSchweisthalISDAUnited StatesGavinScottSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumBradStonerLancaster DHIAUnited StatesDarvinStonerLancaster DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BigaamQip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WateCanWest DHIUnited States	Olivier	Leray	Cecalait / Actilait	France
JuleeO' ReillyDHI Cooperative, IncUnited StatesSilviaOrlandiniLaboratorio Standard Latte - AIAItalyAriadnaReyesHolstein de Mexico A.C.MexicoJohnRhoadsEastern Lab ServicesUnited StatesPaulSauvéCanadian Laboratory ServicesCanadaFranzSchallerlZARAustriaMarkSchweisthalUSDAUnited StatesGavinScottSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumBradStonerLancaster DHIAUnited StatesDarvinStonerLancaster DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesHarrievan den BigaamQip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHIUnited States	Muril	Niebuhr	MNDHIA Zumbrota Laboratory	United States
SilviaOrlandiniLaboratorio Standard Latte - AIAItalyAriadnaReyesHolstein de Mexico A.C.MexicoJohnRhoadsEastern Lab ServicesUnited StatesPaulSauvéCanadian Laboratory ServicesCanadaFranzSchallerlZARAustriaMarkSchweisthalUSDAUnited StatesGavinScottSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumBradStonerLancaster DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BijgaatQip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WateCanWest DHIUnited States	Tony	Nunes	Tulare DHIA	United States
AriadnaReyesHolstein de Mexico A.C.MexicoJohnRhoadsEastern Lab ServicesUnited StatesPaulSauvéCanadian Laboratory ServicesCanadaFranzSchallerlZARAustriaMarkSchweisthalUSDAUnited StatesGavinScottSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumBradSpeissMFC Testing & Research, IncCanadaDarvinStonerLancaster DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	Julee	O' Reilly	DHI Cooperative, Inc	United States
JohnRhoadsEastern Lab ServicesUnited StatesPaulSauvéCanadian Laboratory ServicesCanadaFranzSchallerlZARAustriaMarkSchweisthalUSDAUnited StatesGavinScottSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumBradSpeissMFC Testing & Research, IncCanadaDarvinStonerLancaster DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesFarrievan den BigaatQip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	Silvia	Orlandini	Laboratorio Standard Latte - AIA	Italy
PaulSauvéCanadian Laboratory ServicesCanadaFranzSchallerlZARAustriaMarkSchweisthalUSDAUnited StatesGavinScottSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumBradSpeissMFC Testing & Research, IncCanadaDarvinStonerLancaster DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BiggantIgip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	Ariadna	Reyes	Holstein de Mexico A.C.	Mexico
FranzSchallerlZARAustriaMarkSchweisthalUSDAUnited StatesGavinScottSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumBradSpeissMFC Testing & Research, IncCanadaDarvinStonerLancaster DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BiggartIgip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	John	Rhoads	Eastern Lab Services	United States
MarkSchweisthalUSDAUnited StatesGavinScottSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumBradSpeissMFC Testing & Research, IncCanadaDarvinStonerLancaster DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BijgaatQip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	Paul	Sauvé	Canadian Laboratory Services	Canada
GavinScottSAITL Dairy LaboratoryNew ZealandHélèneSoyeurtGembloux Agricultural UniversityBelgiumBradSpeissMFC Testing & Research, IncCanadaDarvinStonerLancaster DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BijgaatQip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	Franz	Schallerl	ZAR	Austria
HélèneSoyeurtGembloux Agricultural UniversityBelgiumBradSpeissMFC Testing & Research, IncCanadaDarvinStonerLancaster DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BijgaartQlip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	Mark	Schweisthal	USDA	United States
BradSpeissMFC Testing & Research, IncCanadaDarvinStonerLancaster DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BijgaatQip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	Gavin	Scott	SAITL Dairy Laboratory	New Zealand
DarvinStonerLancaster DHIAUnited StatesDaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BijgaartQlip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	Hélène	Soyeurt	Gembloux Agricultural University	Belgium
DaveSukupHeart of America DHIAUnited StatesChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BijgaattQlip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	Brad	Speiss	MFC Testing & Research, Inc	Canada
ChrisThompsonUniversity of KentuckyUnited StatesHarrievan den BijgaartQlip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	Darvin	Stoner	Lancaster DHIA	United States
Harrievan den BijgaartQlip NVNetherlandsSimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	Dave	Sukup	Heart of America DHIA	United States
SimonVander WoudeHigh Desert Dairy Lab, IncUnited StatesDebvan de WaterCanWest DHICanada	Chris	Thompson	University of Kentucky	United States
Deb van de Water CanWest DHI Canada	Harrie	van den Bijgaart	Qlip NV	Netherlands
	Simon	Vander Woude	High Desert Dairy Lab, Inc	United States
Jan Venneman CRV Holding BV Netherlands	Deb	van de Water	CanWest DHI	Canada
	Jan	Venneman	CRV Holding BV	Netherlands

Update on ICAR Reference Laboratory Network – Evolution since 1996

Olivier Leray

Actilait/Cecalait, Rue de Versailles, BP 70129, F-39802 Poligny Cédex, France

History

A policy for analytical quality assurance (AQA) was introduced at the 29th ICAR Session in Ottawa in 1994 that should cover every aspect of milk recording analysis and can provide confidence to stakeholders, ensure equivalence of genetic evaluation and enable analytical system recognition between countries.

That policy was handled by the Working Group on Milk Testing Laboratories and from 2006 continued by the new Sub-Committee on Milk Analysis.

From 1994 the working group has defined essential guidelines so as to assure a minimum precision in milk recording analysis provided the recommendations are applied and, from 1996, created a network of expert laboratories expected to become the basis of an international analytical quality assurance system for milk recording, called ICAR Reference Laboratory Network.

The international reference laboratory network has become an essential piece of the AQA system aiming at analytical harmonisation as its members are entrusted to be intermediaries between national levels and the international level where optimum methods and practices are defined (IDF/ISO guides and standards, ICAR guidelines) to transmit adequate information to milk testing laboratories.

Structure and architecture

The international network constitutes a structure through which, thanks to interlaboratory studies, it becomes possible to provide an international anchorage to routine laboratories and estimating overall accuracy of milk recording measurement and absolute measurement uncertainty in individual laboratories.

This is realised through two levels of network implementation (possibly three), national (or regional) and international. The national reference laboratories operate as bridges for precision traceability between both national and international levels where interlaboratory studies are carried out respectively. A third layer can exist for instance in federal countries where as well regions can organise labs in network or could be developed in the future for on-farm analysis in the prospect of possible sub-network monitored by regional laboratories.

Membership

This makes that any laboratory commissioned to monitor routine testing laboratories should be invited by their national organisation to join the network. For specific situation where only few laboratories with no national co-ordination, individual routine laboratories may also join the network so as to benefit to a direct anchorage to the international level whereas, in well structured local situations, so-called reference laboratories can establish the junction between routine labs and the international level.

Competence and expertise requested as eligibility criteria to belong to the network are one or more of the followings :

- 1- National ring test organizer
- 2- Reference Material supplier
- 3- Master laboratory for centralized calibration
- 4- Teaching and training in laboratory techniques
- 5- Information on analytical methods
- 6- Evaluation of analytical methods/instruments
- 7- Research on analytical methods
- 8- National regulatory control of DHI analyses

the ideal situation being where the reference laboratory covers every competence item and therefore can ensure consistency and continuity in missions to routine laboratories.

Evolution

The numbers of laboratories qualified for various scientific/technical mission have increased gradually from 1996 to 2003, with its membership raised up to 38 members and since then it keeps stable about 38. In mid 2008 there are 38 of 32 countries involved in cow milk analysis, of which as well 16 work for goat milk and 14 for sheep milk.

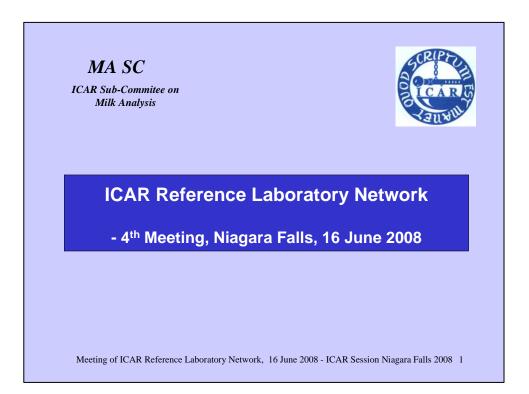
Meanwhile the number of declared eligibility criteria continues to increase thus showing a qualitative development of the network towards maturity. In 2008 75% of competence items realised by 34% of members, and 50% by 63%.

Interlaboratory proficiency studies

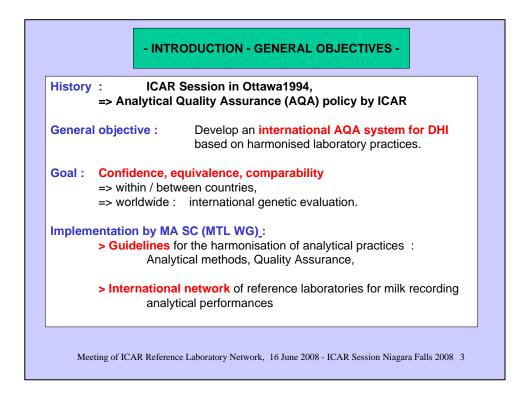
Since 1996 an annual interlaboratory proficiency scheme has been regularly run twice a year for methods used as reference to calibrate routine methods for fat, protein and lactose in cow milk. It was complemented from 1999 with methods for methods for urea and somatic cell counting. In 2008 participant number is stable with about 20 for fat, 21 for protein, 1 for lactose, 15 for urea and 21 for SCC.

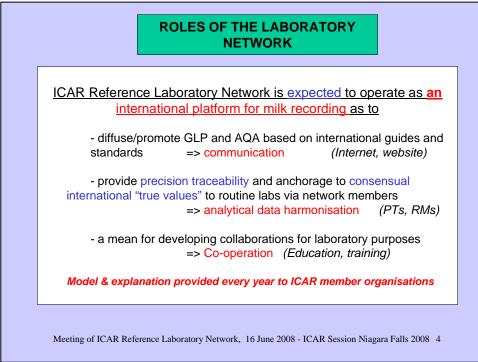
Significant improvement of analytical performances has been noted and today the overall precision observed within the network appears better than that of respective method standards thereby brings proofs of the efficiency of the scheme.

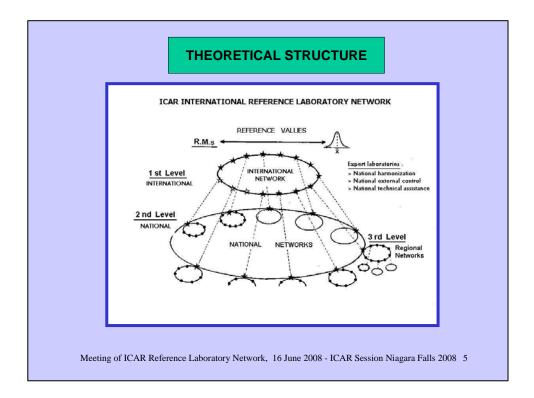
Stage of progress in AQA implementation with the network

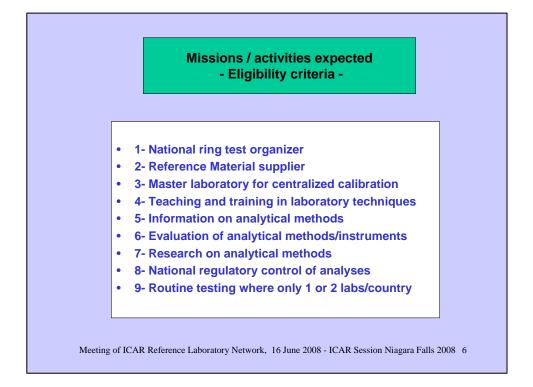

The end of the first phase of implementation of the network was stated in ICAR Session in Kuopio 2006 and the launching of a second phase declared. As the general frame and architecture has been drawn and established time has come to feed the system with installing sustainable operations and activities for the benefit of harmonisation in ICAR member countries.

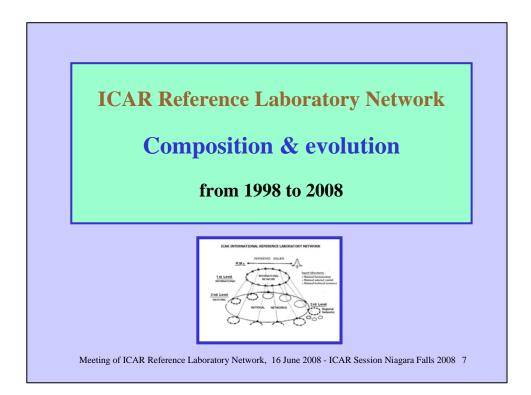
Proper models are to be given through guidelines to organise proficiency studies at national levels adequate for calibration purposes, define methodologies to orient and implement centralised calibration, evaluate analytical precision traceability, establish the international anchoring thanks to ICAR Reference Laboratory Network.

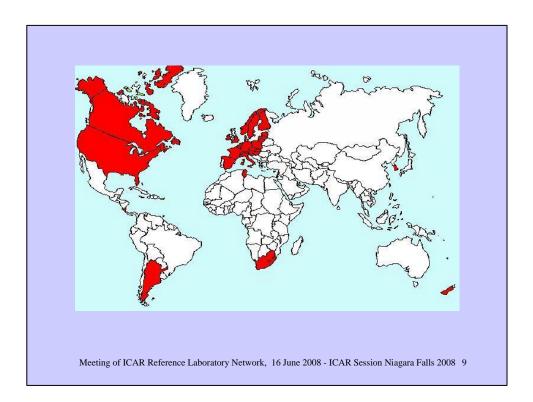

Beside education and training for laboratory practitioners should be promoted through the network with regard to analytical methods for milk and the respective former items and implemented at national levels based on international guidelines and standards.

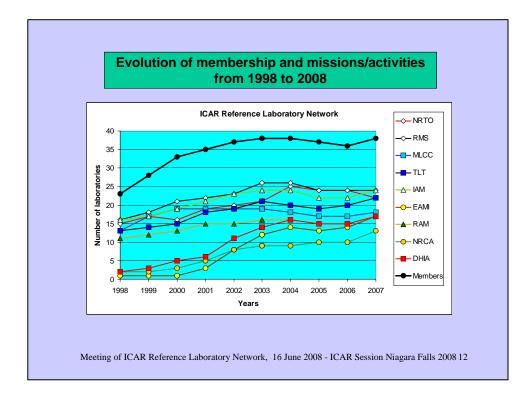

Conclusion

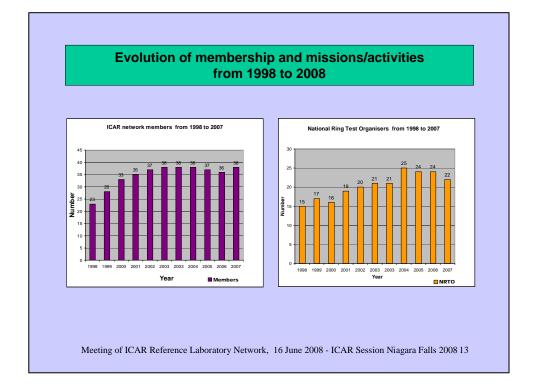

The AQA system launched by ICAR in 1996 has already shown efficiency at the network member level. The analytical quality of national level remains under the responsibility of network members to which appropriate tools and guidance should be brought and developed where missing. The work has been undertaken by the Sub-Committee on Milk Analysis since 2006.

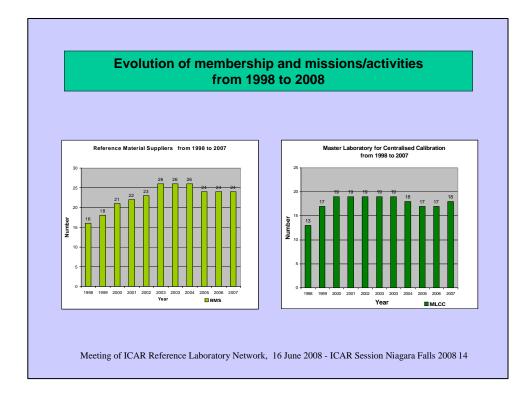


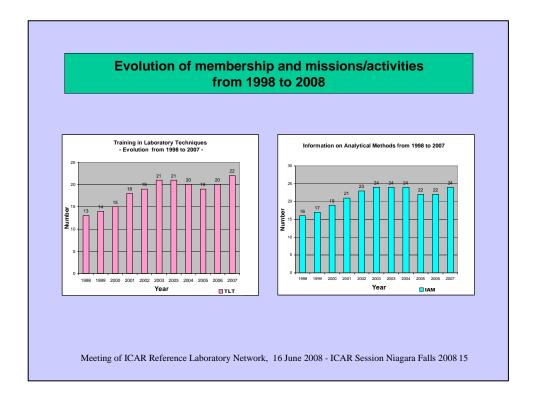

	- Agenda -
8.00 :	Opening - Welcome - Round table for presentation
8.20 :	Introduction : ICAR Reference Laboratory Network history and objectives ICAR analytical strategy - International anchorage & harmonisation (O. Leray, Cecalait, FR)
8.50 :	Interlaboratory reference systems and centralised calibration – Prerequisites and standard optimum procedures (O. Leray, Cecalait, FR)
9.10 :	Discussion
9.40 :	The way to reference systems and centralised calibration for milk recording testing - Present status in Germany (C. Baumgartner, MPR, DE)
10.00 :	Health break
10.20 :	Reference system and centralised calibration for milk recording testing in Argentina (<i>R. Castañeda, Inti-Lacteos, AR</i>)
10.40:	Reference system and centralised calibration for milk (payment) testing in USA, (D. Barbano, Cornell University, USA)
11.00 :	Assessment of laboratory performances and analytical equivalence in milk testing in North America, (P. Sauvé, Canadian Laboratory Services, CA)
11.30 :	Discussion
12.00 - C	closure of the meeting

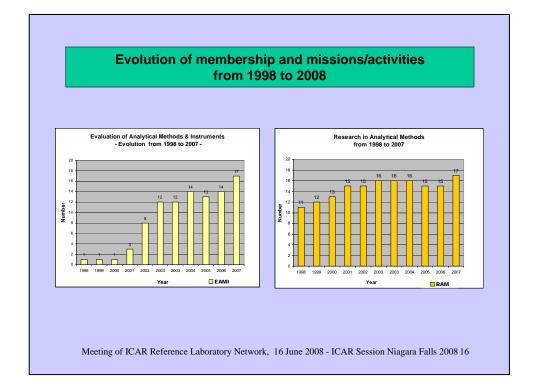


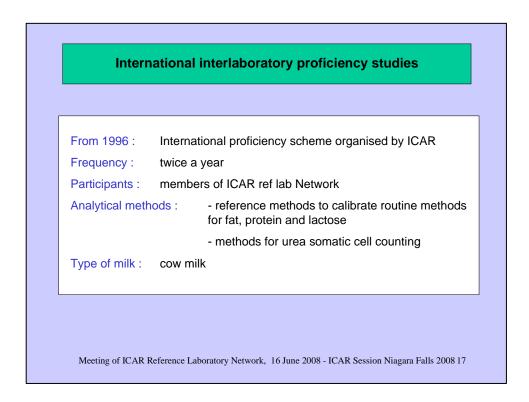

				aboratory Netw			
		Memi	perst	nip in 2008			
laboratory memb	ers fro	m 32 countries as	s follo	ows:			
, ,							
Argentina	(1)	Austria	(1)	Belgium	(2)	Canada	(1)
Cyprus	(1)	Czech Republic	(1)	Denmark	(1)	Estonia	(1)
Finland	(1)	France	(1)	Germany	(1)	Hungary	(1)
Ireland	(1)	Israel	(1)	Italy	(1)	Korea	(1)
Latvia	(2)	Lithuania	(1)	The Netherlands	(1)	New Zealand	(1)
Norway	(1)	Poland	(1)	Slovak Repub.	(1)	Slovenia	(1)
South Africa	(3)	Spain	(1)	Sweden	(1)	Switzerland	(1)
Tunisia	(2)	United Kingdom	n (1)	U.S.A.	(2)	Zimbabwe	(1)
(n): number o	f memb	er(s)					
	am	ong which :	38 1	members for co	w		
			16	members for go	at		
			14	members for she	eep		
					•		

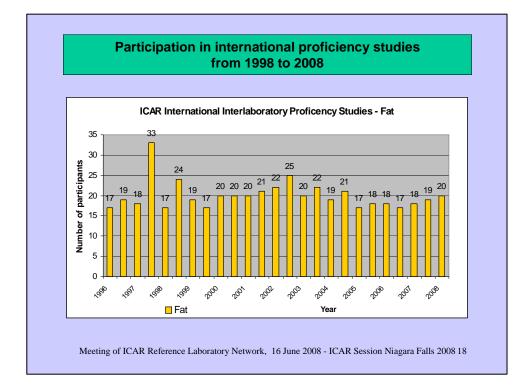

11

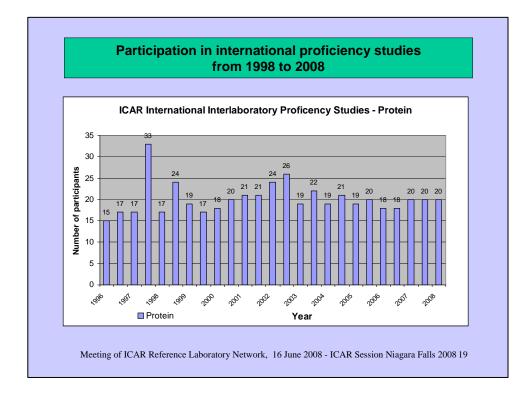


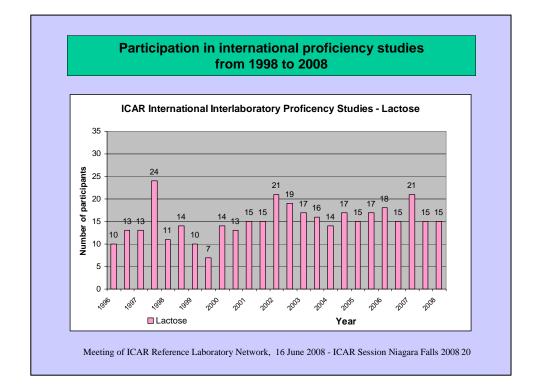

	-					I national ro						
YEAR	NRTO	RMS	MLCC	TLT	IAM	EAMI	RAM	NRCA	DHIA		Other anal.	
1998	15 17	16	13	13	16	1	11 12	2	2	1	1	23
1999 2000	17	18	17	14 15	17	1	12	2	3	1	1	28
2000	10	21	19	18	21	3	15	5	6	2	1	35
2001	20	22	19	10	23	8	15	8	11	5	1	37
2002	20	26	19	21	24	12	16	9	14	7	3	38
2003	21	26	19	21	24	12	16	9	14	7	3	38
2004	25	26	18	20	24	14	16	9	16	9	3	38
2005	24	24	17	19	22	13	15	10	15	8	3	37
	24				22	14	15	10	15	10	3	36
2006	24	24	17	20								
2007 NRTO = Na TLT = Train RAM = Res	24 22 tional Ring To ng in Labora earch on Ana	24 est Organiser tory Techniqu lytical Method	18 ies	22	24 RMS = Refe IAM = Inforr NRCA = Na	17 arence Materia nation on Ana tional Regulat	17 al Supplier lytical Metho	13 ds	17 MLCC = Ma EAMI = Eva DHIA = Dai	13 Ister Laborato Iluation of Ana ry Herd Impro Analyses for r	3 ry for Centra alytical Metho vernent Analy	ds/Instrun
2007 NRTO = Na TLT = Train RAM = Res	24 22 tional Ring To ng in Labora earch on Ana	24 est Organiser tory Techniqu lytical Method	18 les ls ICAR Nationa	22	24 RMS = Refe IAM = Inforr NRCA = Na	17 erence Materia nation on Ana tional Regulat	17 al Supplier lytical Metho ory Control c	13 ds f Analyses	17 MLCC = Ma EAMI = Eva DHIA = Dai Payment =	ister Laborato Iuation of Ana ry Herd Impro	3 ry for Centra alytical Metho vernent Analy	ised Calib ds/Instrun
2007 NRTO = Na TLT = Train RAM = Res Membership	24 22 Itional Ring Tr ng in Labora earch on Ana = Officially r	24 est Organiser tory Techniqu lytical Method hominated by	18 Ies ICAR Nationa Evolution o	22 I Committees	24 RMS = Refe IAM = Inforr NRCA = Na	17 erence Materia nation on Ana tional Regulat ational roles	17 al Supplier lytical Metho ory Control o s from 1998	13 ds f Analyses to 2007 (er	17 MLCC = Ma EAMI = Eva DHIA = Dai Payment = ad of year)	ister Laborato iluation of Ana ry Herd Impro Analyses for r	3 ry for Centra Ilytical Metho vement Anal nilk payment	ised Calib ds/Instrun /ses
2007 NRTO = Na TLT = Train RAM = Res Membership YEAR	24 22 tional Ring Tr ng in Labora earch on Ana = Officially r NRTO	24 est Organiser tory Techniqu lytical Methoc nominated by RMS	18 Is ICAR Nationa Evolution of MLCC	22 I Committee: of the prop TLT	24 RMS = Refe IAM = Inforr NRCA = Na S ortions of n	17 rrence Materia nation on Ana tional Regular ational role: EAMI	17 al Supplier lytical Metho ory Control o s from 1998 RAM	13 ds f Analyses to 2007 (er NRCA	17 MLCC = Ma EAMI = Eva DHIA = Dai Payment = Ind of year) DHIA	Ister Laborato Iluation of Ana ry Herd Impro Analyses for r	3 ny for Centra Ilytical Metho vement Analy nilk payment Other anal	ised Calib ds/Instrun /ses Memb
2007 NRTO = Na TLT = Train RAM = Res Membership YEAR 1998	24 22 tional Ring Tr ng in Labora earch on Ana = Officially r NRTO 68	24 est Organiser tory Techniqu lytical Methoc nominated by RMS 73	18 Is ICAR Nationa Evolution (MLCC 59	22 I Committee: of the prop TLT 59	24 RMS = Refe IAM = Inforr NRCA = Na portions of n IAM 73	17 rrence Materia nation on Ana tional Regulat ational roles <u>EAMI</u> 5	17 al Supplier lytical Metho ory Control o s from 1998 RAM 50	ds if Analyses to 2007 (er <u>NRCA</u> 9	17 MLCC = Ma EAMI = Eva DHIA = Dai Payment = ad of year) DHIA 9	Ister Laborato Iuation of Ana ry Herd Impro Analyses for r PAYMENT 5	3 ny for Centra Ilytical Metho vement Anal nilk payment Other anal 5	ised Calib ds/Instrun rses Membro 100
2007 NRTO = Na TLT = Train RAM = Res Membership YEAR 1998 1999	24 22 tional Ring Tri ng in Labora sarch on Ana = Officially r NRTO 68 63	24 est Organiser tory Techniqu lytical Methoo nominated by RMS 73 67	18 IcAR Nationa Evolution of MLCC 59 63	22 I Committees of the prop TLT 59 52	24 RMS = Refe IAM = Inforr NRCA = Na portions of n IAM 73 63	17 erence Materia nation on Ana tional Regular ational roles <u>EAMI</u> 5 4	17 al Supplier lytical Metho ory Control of s from 1998 RAM 50 44	to 2007 (er	17 MLCC = Ma EAMI = Eva DHIA = Dai Payment = d of year) DHIA 9 11	Ister Laborato Iluation of Ana y Herd Impro Analyses for r PAYMENT 5 4	3 ry for Centra Jytical Metho vement Analy nilk payment Other anal. 5 4	ised Calib ds/Instrum ses Membring 100 100
2007 NRTO = Na TLT = Train RAM = Res Membership YEAR 1998 1999 2000	24 22 tional Ring Ti ng in Labora sarch on Ana e = Officially r 68 63 48	24 est Organiser tory Techniqu lytical Methoc nominated by RMS 73 67 67 64	18 Is ICAR Nationa Evolution of 59 63 58	22 I Committee: of the prop TLT 59 52 45	RMS = Refe IAM = Inforr NRCA = Na ortions of n IAM 73 63 58	17 prence Materia nation on Ana tional Regular ational role: <u>EAMI</u> 5 4 3	17 al Supplier lytical Metho ory Control of s from 1998 RAM 50 44 39	13 ds if Analyses to 2007 (er 9 7 9 7 9	17 MLCC = Ma EAMI = Evz DHIA = Dai Payment = ad of year) DHIA 9 11 15	Ister Laborato Iluation of Ana y Herd Impro Analyses for r PAYMENT 5 4 3	3 ry for Centra Ilytical Metho vement Analy nilk payment Other anal. 5 4 3	ised Calib ds/Instrum ses <u>Member</u> 100 100 100
2007 NRTO = Na TLT = Train RAM = Res Membership YEAR 1998 1999 2000 2001	24 22 tional Ring Ting in Labora earch on Ana = Officially r NRTO 68 63 48 54	24 est Organiser tory Techniqu lytical Methoc nominated by RMS 73 67 64 63	18 Is ICAR Nationa Evolution of MLCC 59 63 58 58 54	22 I Committees of the prop 59 52 45 51	24 RMS = Refe IAM = Inforr NRCA = Na 5 5 5 6 1 6 3 58 60	17 rence Materia nation on Ana tional Regulat ational role: EAMI 5 4 3 9	17 al Supplier lytical Metho ory Control of s from 1998 RAM 50 44 43 9 43	13 ds if Analyses to 2007 (er 9 7 9 14	17 MLCC = Me EAMI = Eva DHIA = Dai Payment = ad of year) DHIA 9 11 15 17	International ster Laborato luation of Ana ry Herd Impro Analyses for r PAYMENT 5 4 3 6	3 ny for Centra alytical Metho vernent Analy nilk payment Other anal 5 4 3 3	ised Calib ds/Instrum /ses // 100 100 100 100 100
2007 NRTO = Na TLT = Train RAM = Res Membership YEAR 1998 1999 2000	24 22 tional Ring Ti ng in Labora aarch on Ana a = Officially r 68 63 48	24 est Organiser tory Techniqu lytical Methoc nominated by RMS 73 67 67 64	18 Is ICAR Nationa Evolution of 59 63 58	22 I Committee: of the prop TLT 59 52 45	RMS = Refe IAM = Inforr NRCA = Na ortions of n IAM 73 63 58	17 prence Materia nation on Ana tional Regular ational role: <u>EAMI</u> 5 4 3	17 al Supplier lytical Metho ory Control of s from 1998 RAM 50 44 39	13 ds if Analyses to 2007 (er 9 7 9 7 9	17 MLCC = Ma EAMI = Evz DHIA = Dai Payment = ad of year) DHIA 9 11 15	Ister Laborato Iluation of Ana y Herd Impro Analyses for r PAYMENT 5 4 3	3 ry for Centra Ilytical Metho vement Analy nilk payment Other anal. 5 4 3	ised Calib ds/Instrum ses <u>Membrand</u> 100 100 100
2007 NRTO = Na TLT = Train RAM = Res Membership YEAR 1998 1999 2000 2001 2002	24 22 tional Ring Tri ng in Labora sarch on Ana = Officially r 68 63 48 54	24 est Organiser tory Techniqu lytical Method hominated by RMS 73 67 64 63 63 62	18 Icar Nationa Evolution of MLCC 59 63 58 54 51	22 I Committees of the prop 59 52 45 51 51	24 RMS = Refe IAM = Inforr NRCA = Na portions of n IAM 73 63 58 60 62	17 rence Materia nation on Ana tional Regular ational roles EAMI 5 4 3 9 22	17 al Supplier lytical Metho ory Control o s from 1998 RAM 50 44 39 43 41	13 ds if Analyses it to 2007 (er NRCA 9 7 9 14 22	17 MLCC = Ma EAMI = Eva DHIA = Dai Payment = ad of year) DHIA 9 111 15 17 30	PAYMENT 5 4 3 6 14	3 ry for Centra alytical Metho vernent Anal nilk payment Other anal. 5 4 3 3 3	ised Calib ds/Instrum ses <u>Member</u> 100 100 100 100 100 100
2007 NRTO = Na TLT = Train RAM = Res Membership 1998 1999 2000 2001 2002 2003 2004 2005	24 22 tional Ring Tr ng in Labora arch on Ana = Officially r 68 63 48 54 54 55 66 65 65	24 est Organiser tory Techniqu lytical Methoc nominated by 73 67 67 64 63 62 68	18 Is ICAR Nationa Evolution (MLCC 59 63 58 51 50 46	22 I Committees of the prop 52 45 51 55	24 RMS = Refe IAM = Inforr NRCA = Na ortions of n IAM 73 63 58 60 62 63	17 rence Materia ional Regulat ational Regulat 5 4 3 9 22 32 37 35	17 al Supplier lytical Methodory Control of ory Control of s from 1998 RAM 50 44 39 43 41 42 42 42 41	13 ds if Analyses to 2007 (er 9 7 9 14 22 24	17 MLCC = Mt EAMI = Eva DHIA = Dai Payment = d of year) DHIA 9 11 15 17 30 37 42	PAYMENT 5 4 3 6 14 18	3 ry for Centra liytical Metho vement Anal nilk payment 5 4 3 3 3 8	ised Calib ds/Instrum /ses // 100 100 100 100 100 100 100
2007 NRTO = Na TLT = Train RAM = Res Membership 1998 1999 2000 2001 2002 2003 2004	24 22 tional Ring Tr ng in Labora sarch on Ana = Officially r 68 63 48 54 54 54 55 66	24 est Organiser tory Techniqu lytical Method oorninated by 73 67 67 64 63 62 68 68 68	18 is ICAR Nationa Evolution of MLCC 59 63 58 54 51 50 47	22 I Committees of the prop TLT 59 52 52 51 51 51 51 55 55 53	24 RMS = Refe IAM = Infor NRCA = Na pritions of n IAM 73 58 60 62 63 63	17 rence Materia nation on Ana- tional Regulat ational roles EAMI 5 4 3 9 22 32 37	17 al Supplier lytical Methodory Control of ory Control of 6 from 1998 RAM 50 44 39 43 41 42 42	13 ds f Analyses to 2007 (er NRCA 9 7 9 14 22 24	17 MLCC = M; EAMI = Eva DHIA = Dai Payment = Id of year) DHIA 9 11 15 17 30 37 42	PAYMENT PAYMENT 5 4 3 6 14 18 24	3 ry for Centra alytical Metho vement Analy nilk payment 5 4 3 3 3 3 8 8 8	ised Calib ds/Instrum ses <u>Member</u> 100 100 100 100 100 100 100

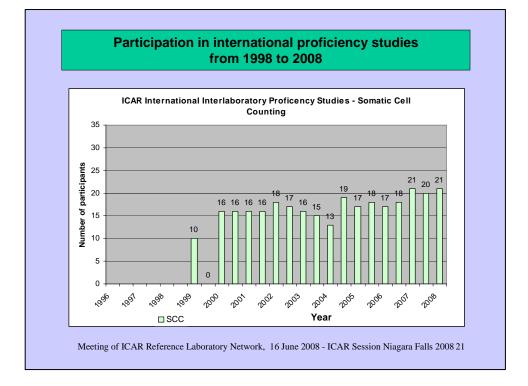

Criteria number N	Proportion %	Lab number with N	Lab % with N	Lab number with at least N	Lab % with a least N
8	100%	5	13%	5	13%
7	88%	4	11%	9	24%
6	75%	4	11%	13	34%
5	63%	4	11%	17	45%
4	50%	7	18%	24	63%
3	38%	3	8%	27	71%
2	25%	2	5%	29	76%
1	13%	4	11%	33	87%
0	0%	5	13%	38	100%

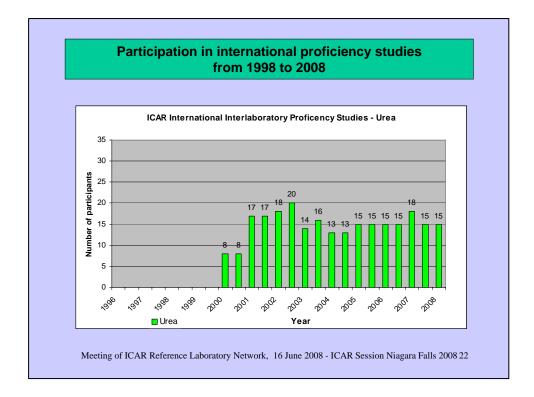


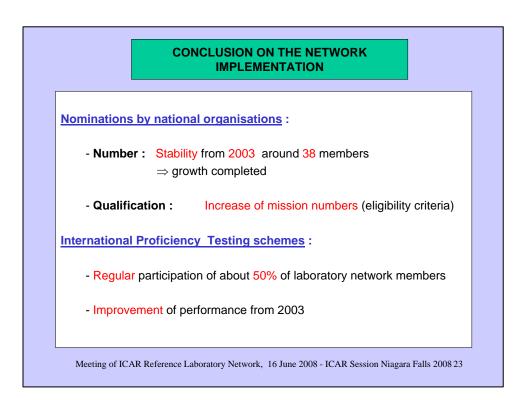












ICAR AQA strategy – International anchorage and harmonisation

Olivier Leray

Actilait/Cecalait, Rue de Versailles, BP 70129, F-39802 Poligny Cédex, France

Introduction

The policy for analytical quality assurance (AQA) implemented from 1994 has been based on the harmonisation of laboratory practices and analytical performance laboratories in ICAR member countries thanks to missions devoted to expert laboratories, so-called reference laboratories as justified by strong technical competence. Those missions refer to lab monitoring, expertise and service supply for quality assurance (QA) and quality control (QC). ICAR countries have been invited to nominate or create minimum one such a laboratory for national milk recording so that the whole of reference laboratories can become members of an active international reference laboratory network.

The international reference laboratory network has become an essential piece of the AQA system aiming at analytical harmonisation as its members are entrusted to be intermediaries between national levels and the international level where optimum methods and practices are defined (IDF/ISO guides and standards, ICAR guidelines) to transmit adequate information to milk testing laboratories.

International anchorage

International anchorage is made :

- First, through same/similar practices in every ICAR countries which is achieved through using same international standards and guides,
- second, establishing concrete technical links between the high level of expertise (international reference laboratories) and routine testing laboratories in every country.

A technical linkage is to be made between the unknown truth given by the consensus of international milk recording community – represented by average results produced by the international reference laboratory network – and the final results obtained by testing laboratories.

It can be achieved through two major tools that can be implemented in parallel at both national and international levels with proper connection, correspondence and relay.

- Interlaboratory proficiency schemes : measuring lab performances. Through adequate combination, it is possible to establish and measure the chaining of errors in analytical steps that contribute to the final result (with regard to the reference methods and routine methods).
- Interlaboratory certification schemes : determination of true (or reference) values for reference materials (RMs).

Performance evaluation

A protocol was adopted by ICAR for regular ICAR proficiency studies – international level – and is to be proposed in guidelines to ICAR countries for national implementation. Trials use q=10 samples evenly distributed throughout the concentration range of usual milk analyser calibration and labs perform duplicate analyses (n=2). Lab evaluation is made through the laboratory bias - average of differences \overline{d}_{Lk} measured between lab results and the reference value \overline{X}_S (grand mean of all the labs per sample) - and the standard deviation of differences as an indicator of consistence (outlier result).

Laboratory score $\overline{d}_L = \sum \overline{d}_{Lk}/q = \overline{x}_L - \overline{X}$ must lay within the limits associated to uncertainty of \overline{d}_L

$$U_{\bar{d}L} = \pm 2.(U_{\bar{x}L}^2 + U_{\bar{x}}^2)^{1/2}$$
 or $U_{\bar{d}L} = \pm 2.[(\sigma_R^2 - \sigma_r^2.(1-1/nq).(1+1/p)]^{1/2}]$

Beside punctual elements of within lab reproducibility can be estimated through

 $sR_{L}^{2} = sr^{2} .(1-1/n) + \overline{d}_{L}^{2} + sd^{2}$

with estimate calculated by averaging precision elements of several successive trials. Within lab reproducibility standard deviation can then be used for determining uncertainty of test results.

Result uncertainty

Precision and accuracy elements produced through PT results and analyser monitoring and calibration allow to calculate the overall accuracy and uncertainty of routine testing results in a laboratory. To realise adequate estimation elements used are to be obtained from sufficient numerous data.

For the reference methods (q samples and n replicates) it is calculated according to ISO 5725-6 as

$$U_{ref} = \pm u_{0.975} \cdot \left[sR_{L,ref}^{2} - sr_{L,ref}^{2} \cdot (1 - 1/nq)\right]^{1/2} \text{ and with high nq (calibration) } U_{ref} \approx \pm u_{0.975} \cdot \left(sR_{L,ref}^{2} - sr_{L,ref}^{2}\right)^{1/2}$$

For routine (alternative) methods, it is estimated according to ISO 8196 through $U_{alt} \approx \pm u_{0.975} \cdot (sR_{L,alt}^2 + s_{v,x}^2)^{1/2}$

Overall uncertainty of routine testing results U is obtained by combining both types of error as $U \approx \pm u_{0.975} .(sR_{L,ref}^2 - sr_{L,ref}^2 + sR_{L,alt}^2 + s_{y,x}^2)^{1/2}$

Traceability to an international reference

The reference laboratory of every national laboratory network participates in national and international proficiency studies in parallel. Special training and procedures to ensure trueness and performance stability what is checked through international PT results (re qualification of reference laboratories).

The bridge between national and international levels is calculated through the difference Δ between national and international references of parallel trials (Figure 2). The latter difference is calculated through the scores obtained by the reference laboratory M (master) in one and the other trials $\Delta = \vec{d}_{MN} - \vec{d}_{MI}$ provided laboratory bias is shown constant (established by several successive international PTs). Since then any laboratory L can estimate a **virtual equivalent international score** from its national score by subtracting Δ : $\vec{d}_{LI} = \vec{d}_{LN} - \Delta$

Uncertainty of the estimate must take into account several steps involved in bridging so it is larger than a direct performance evaluation.

 $U_{\overline{d}Ll} = \pm 2.[(\sigma_R^2 - \sigma_r^2 \cdot (1 - 1/nq) \cdot (3 + 1/p)]^{1/2}]$

- with large nq and p (labs) values : $U_{\overline{d}LI} \approx \pm 2.\sqrt{3}.(\sigma_R^2 - \sigma_r^2)^{\frac{1}{2}}$ - with highly qualified master laboratories ($\sigma_{RM} \approx \sigma_{rM}$) and large nq and p values : $U_{\overline{d}LI} \approx \pm 2.(\sigma_R^2 - \sigma_r^2)^{\frac{1}{2}}$

Comparison between laboratories

At a single level national or international it is easily realised through the difference $\overline{d}_{1,2}$ of scores of respective laboratories L1 and L2 (Figure 1), since $\overline{d}_{1,2} = \overline{x}_{L1} - \overline{x}_{L2} = \overline{d}_{L1} - \overline{d}_{L2}$

It is expected to stay between $\pm 2.\sqrt{2} U_{\overline{dL}} = \pm 2.[(\sigma_R^2 - \sigma_r^2.(1 - 1/nq).(2 + 1/p_1 + 1/p_2)]^{1/2} \approx \pm 2.\sqrt{2}.(\sigma_R^2 - \sigma_r^2)^{1/2}$

Between different trials, a **virtual equivalent international differences** can be estimated provided reference laboratories can establish correspondence to the international level (Figure 3) where the virtual difference can be calculated by

$$\mathsf{D} = \overline{\mathsf{d}}_{\mathsf{L}\mathsf{I}\mathsf{I}} - \overline{\mathsf{d}}_{\mathsf{L}\mathsf{I}\mathsf{2}} = (\overline{\mathsf{d}}_{\mathsf{L}\mathsf{N}\mathsf{I}} - \overline{\mathsf{d}}_{\mathsf{L}\mathsf{N}\mathsf{2}}) - (\Delta_{\mathsf{I}} - \Delta_{\mathsf{2}})$$

ICAR AQA strategy – International anchorage and harmonisation

With $\Delta_1 = \overline{d}_{MN1} - \overline{d}_{M11}$ the bias of the reference of Trial 1 to that of the international trial $\Delta_2 = \overline{d}_{MN2} - \overline{d}_{M12}$ the bias of the reference of Trial 2 to that of the international trial

Uncertainty of the difference must take into account the several steps involved in bridging for two national networks and is calculated from uncertainty of the uncertainty of international correspondence formerly mentioned through $\pm 2.\sqrt{2}$. U_{d LI} = U_{dLI} $\approx \pm 2.\sqrt{6}.(\sigma_R^2 - \sigma_r^2)^{\frac{1}{2}}$ and with highly qualified master laboratories $(\sigma_{RM} \approx \sigma_{rM})$ U_{dLI} $\approx \pm 2.\sqrt{2}.(\sigma_R^2 - \sigma_r^2)^{\frac{1}{2}}$

Certification of reference materials

Same type of trials as PT studies can be used to determine true value for reference materials provided the experimental design permit so.

ICAR protocol fit for purpose since proficiency testing and possible reference material are made to assess reference method and/or calibrate routine methods. For that reason it is recommended the sample number must be the same as that used for calibration. The minimum stated in ISO 8196 is 9. Guidelines are to be develop with this respect in the future.

Thanks to performance evaluation through proficiency studies, it is possible to select best performing laboratories to establish true (reference) values for RMs. Otherwise the whole of participants can be used provided proper discarding of outlier results and laboratories.

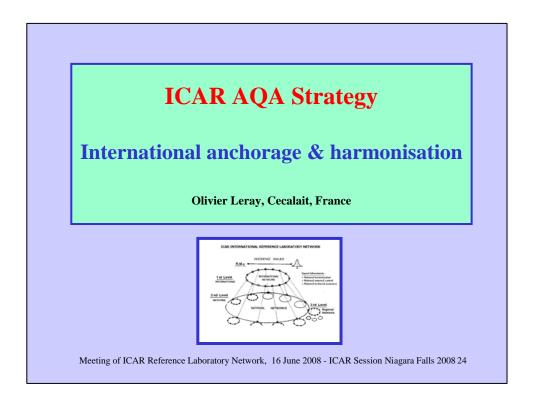
ISO 5725 provides adequate recommendation for calculation of true values and the associated uncertainty valid for both lab performance evaluation studies and reference material certification studies.

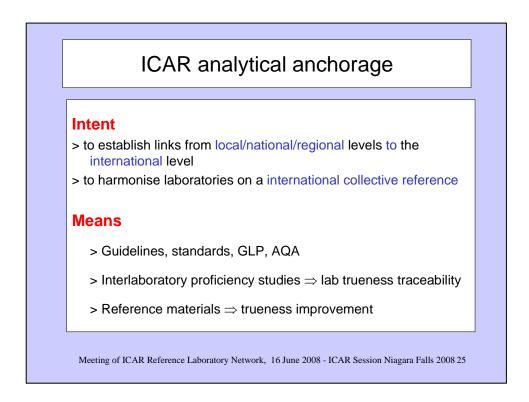
Conclusion

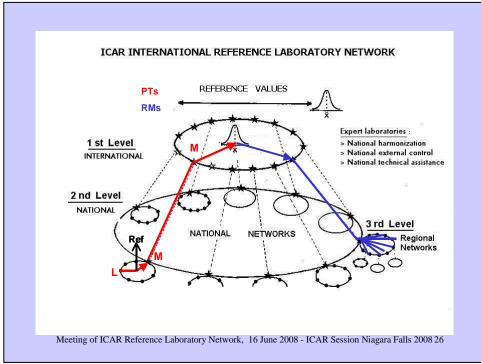
International laboratory anchorage passes through interlaboratory studies organised for dedicated laboratory network implemented on national and international level. Connection between levels is established by expert laboratories members of networks at both levels.

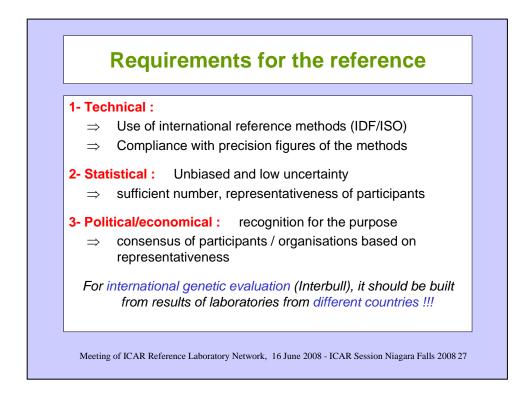
Technical tools already exist to take full benefit of the system developed other are to be developed from the theory and prospects above presented.

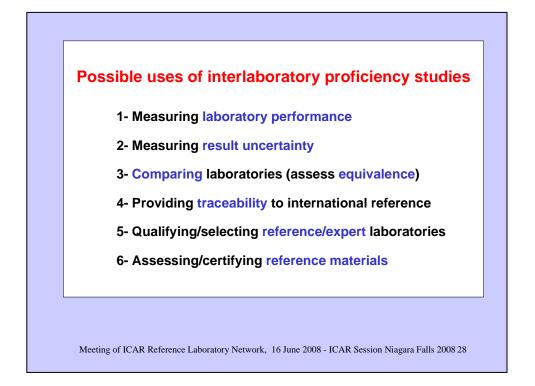
ICAR Reference Laboratory Network is the corner of the system and must be enhance with increased worldwide representativeness and competence of members.

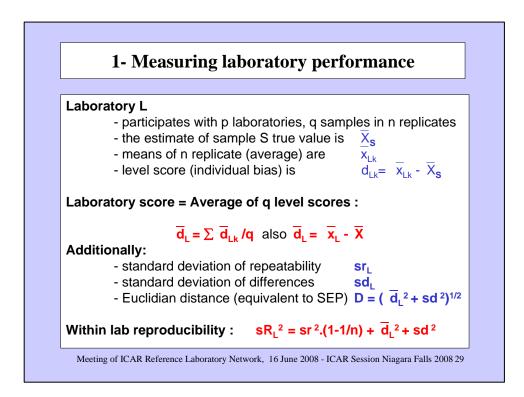

References

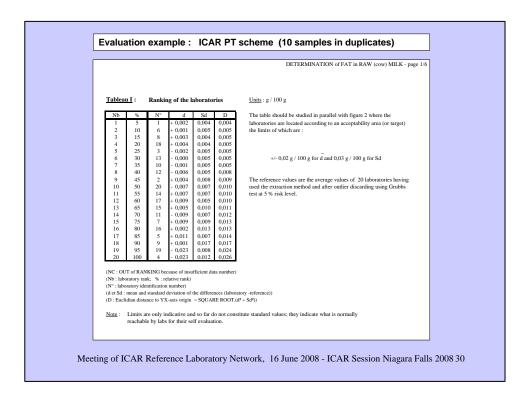

International Dairy Federation, (1999). Quality Assurance and Proficiency Testing. Report of Group E29. Bulletin of IDF 342/1999, 23-30.

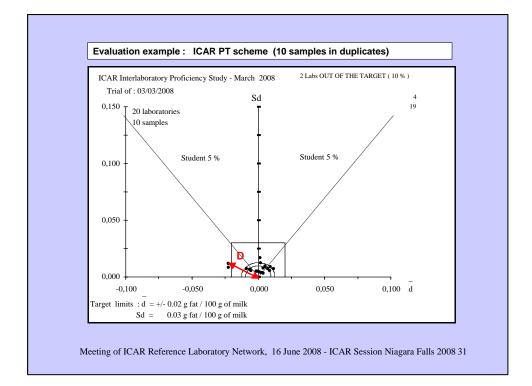

ISO 8196-2, (2000). Milk - Definition and evaluation of the overall accuracy of indirect methods of milk analysis - Part 2: Calibration and quality control in the dairy laboratory.

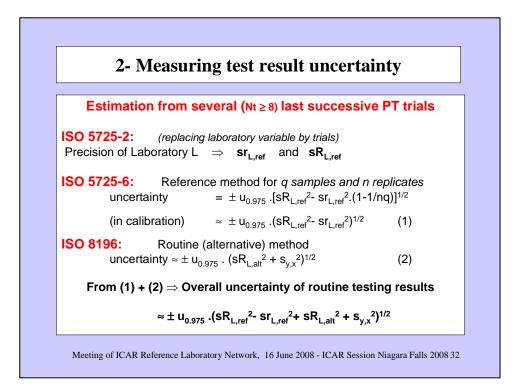

ISO 5725-6, (1994). Accuracy (trueness and precision) of measurement methods and results - Part 6: Use in practice of accuracy values.

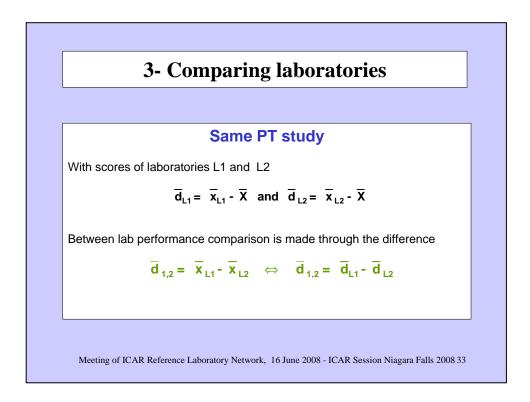

Leray O., (1995): Contrôle qualité et harmonisation des pratiques dans les laboratoires laitiers : Un enjeu pour le contrôle laitier / *Quality control and harmonisation of laboratory practices in dairy laboratories : A challenge to milk recording*. Proceedings of 29th Biennial Session of the International Committee for Animal Recording (ICAR). Ottawa, Canada, July 31-August 5, 1994. EAAP publication n°75, 1995, 179-182.

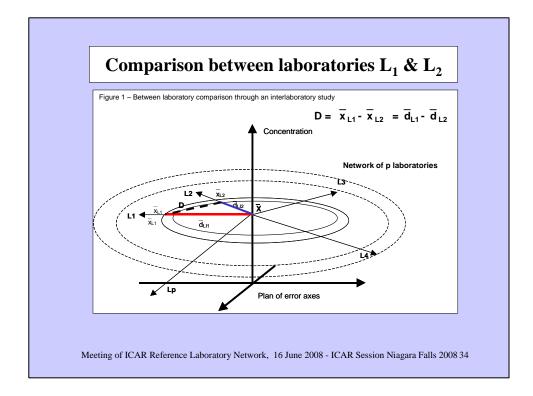


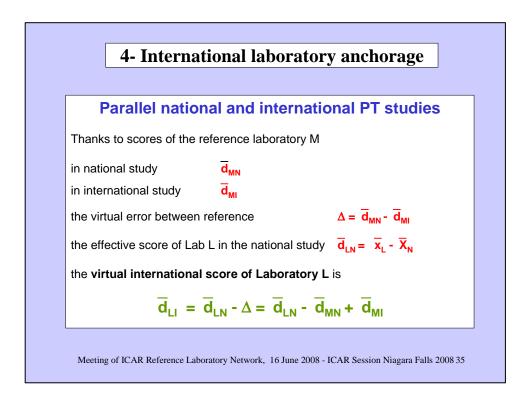


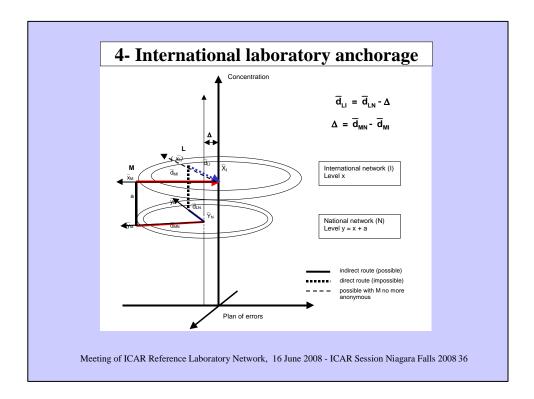


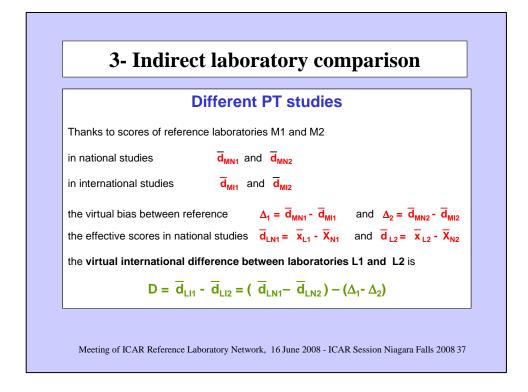


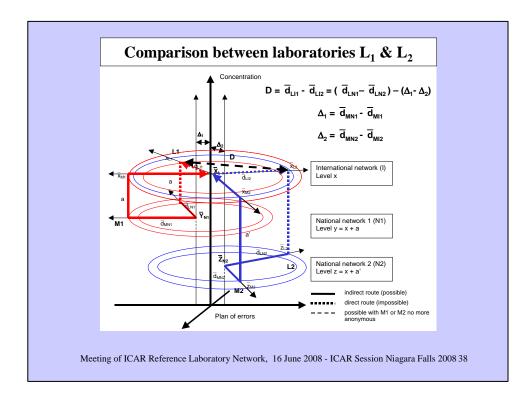


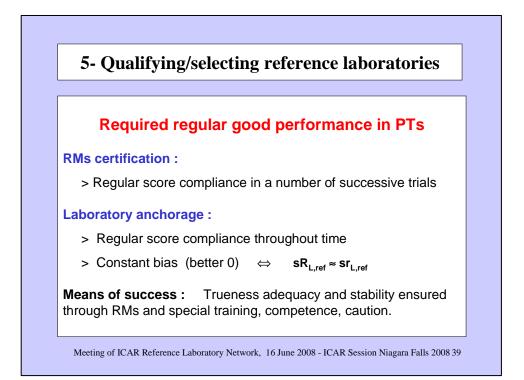


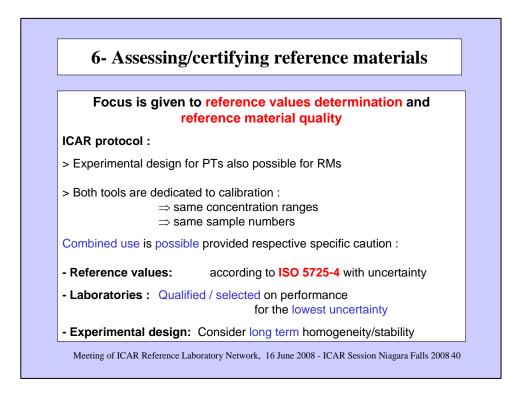


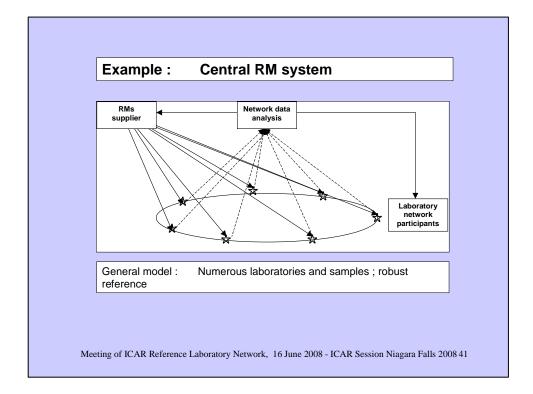

ICAR AQA strategy – International anchorage and harmonisation

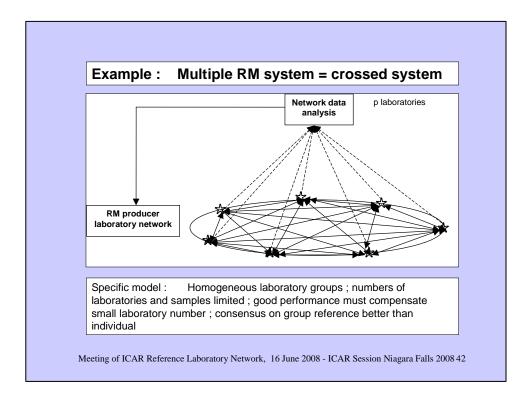


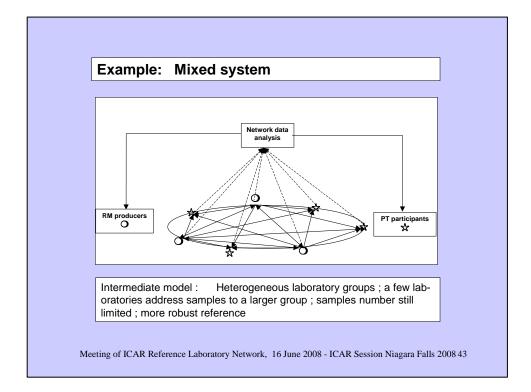









29





Interlaboratory reference system and centralised calibration - Prerequisites and standard optimum procedures

Olivier Leray

Actilait/Cecalait, Rue de Versailles, BP 70129, F-39802 Poligny Cédex, France

Introduction

Genetic evaluation on milk composition has become possible only through the generalised use of rapid automated method of milk analysis. Mid infra red spectroscopic methods and fluoro-opto-electronic methods have become predominant till being the only techniques used in large milk routine testing for milk composition and somatic cell counting.

For such methods calibration of routine methods is the key operation but also the most expensive to laboratories as it requires a lot of time and competence in sample preparation and reference analysis.

Sharing calibration cost between several laboratories thus amortising over many milk sample testing appears an economical alternative for laboratories beside the possibility to optimise both calibration sample quality and harmonise reference results through same values to all the laboratories. Indeed such calibration system can be easily associated to interlaboratory studies in order to optimise of the trueness of reference values for calibration.

Promoting the implementation of robust reference established by laboratory groups and centralised calibration in so-called reference system has become a new objectives of ICAR from 2006. Recommendations as pre-requisites and optimum procedures for implementation are needed for international harmonisation.

Objectives and prerequisites

The objectives are to establish reference values for an appropriate material (milk) that can be valid for a community of laboratories (spread over a collect territory), transfer consensus reference values to the laboratories to calibrate routine methods and at end assess effectiveness of the system.

Prerequisites refer to the accuracy of routine methods, the harmonisation of laboratories, appropriate logistic conditions.

- Depending on the variation of milk composition in the collect areas and the sensitivity of methods to matrix effects, the accuracy value can become larger than in usual calibration. Before implementing centralised calibration it is of major importance to evaluate whether or not the extent of accuracy is acceptable for the intended purpose i.e. milk recording. With this respect it can be referred to experiment results presented in Kuopio (O. Leray 2006).

- Methods, expression units (e.g. m/m, m/v, per 100 or per Kilo), criterion expression (e.g. True protein vs Crude protein) should be harmonised within the laboratory group so that calibration sample characteristics suit to every instrument equally.

- Sample preservation and transportation facilities should be adequate to analyse sample within short delays with no change in the physicochemical composition of calibration milk samples.

Means and tools

To achieve its goal, ICAR intends to produce suitable guidelines for laboratories on organising interlaboratory proficiency studies (PT) and centralised calibration (CC) and provide relevant services to countries.

International PT services are already supplied for the sake of the international reference harmonisation through a reference laboratory network according to a protocol approved by ICAR. This protocol should be detailed and become part of ICAR guidelines.

Developing/certifying international reference materials as gold standards is part of ICAR strategy beside promoting the use of national/local reference materials to relay international standard in countries either for checking reference methods or calibration.

Guidelines for proficiency studies

They will be in agreement with other general international standard on the subject which would be referred to but will additionally include specific requirements related to calibration and alternative methods thus establishing consistency with ISO 8196.

Especially

- the experimental design will be well stated with minimum numbers (e.g. 9 samples, 3 levels, 2 replicates) and concentration arrangement for optimised assessment (according to ISO 9622),

- standard statistical analysis and presentation recommended using performance scores and target figures. Slope, linearity, interactions assessment will complete the statistical analysis for studies with routine methods. Examples were published in ICAR Session proceedings in Rotorua (1998) and the IDF Bulletin 342/1999.

Guidelines for centralised calibration

Guidelines will indicate protocols to

- evaluate the overall accuracy in a centralised calibration system,
- define the characteristics of calibration reference material,
- assign reference values,
- provide indications for line adjustment in the laboratory.

Evaluation of the overall accuracy of a centralised calibration system

It can be performed by two ways, either once prior implementation of the system through an experiment provided natural conditions would not later, or through regular proficiency studies involving reference and routine methods.

Two protocols can be proposed depending on the situation

a-In-lab experiment : It is carried out prior implementation with a unique instrument provided prerequired condition of harmonisation will be maintained later. A number of representative samples are collected in milk testing lab areas and analysed by the experimenting laboratory for both reference and routine methods. Operations are evenly repeated throughout a campaign of milk production and regional and seasonal effect are measured through ANOVA.

b- Interlaboratory studies : It is compared the reproducibility of routine methods to that of reference methods to decide whether or not centralised calibration provide equivalent laboratory bias distributions. In that case the information is general as the routine methods can be different with no relation to a well define analytical method. Recommendations of ISO 5725 are followed.

Characteristics of RMs for calibration

Adequate recommendation will be given to guarantee physicochemical quality of milk, sample preparation and batch homogeneity, preservation and shelf life, in particular with concern to the choice of the milk, milk and sample handling, chemical preservatives and sample containers.

Also indications for appropriate component arrangement and concentration range will be provided referring to optimisation of calibration and accuracy through specific designs with recombined (modified) milk samples (O. Leray, 1998, FAIR CE 1997-1999).

Assigning reference values

To limit the risk of systematic bias and get the agreement of all laboratories and parties they should not be established by a single laboratory but instead by all the laboratories of the concerned group.

The way to define reference values relates on whether or not matrix effects exist with the routine methods.

Where there is no matrix effect representativeness of calibration milk is of lower importance and focus is made only on physicochemical quality and concentration characteristics. Reference values are determined using the means of reference results of all the laboratories obtained in an interlaboratory study (Figure 1).

This is the same way also used in case of matrix effects when using milk materials well representative of the area (e.g. silo bulk milk) but choice must then be made on whether or not final calibration adjustments are locally required in laboratories with regard to laboratory biases observed. The assigned values are here used for pre-calibration (assessing slope, linearity, inter-correction fittings) whereas calibration is completed using one or more bulk milks representative of the area.

When using recombined (so-called modified) milk samples, greatest interest must be given in maintaining the native physicochemical quality of milk hence representativeness may not be reached. Through the matrix effect so-prepared calibration sample are not on the average line of the population. The assigned values are then obtained through a correction from the bias between the routine and the reference method with one or more bulk milks representative of the area. Calibration can be completed for individual labs (as above mentioned) if the range of local biases is too large for the purpose of milk testing.

Calibration

Recommendations for calibration operations are to follow the normal procedures of manufacturers and ISO 8196 in which centralised calibration is mentioned as a possible option. This is to 1- Check and where needed optimize instrument fittings (pre-calibration), 2- Adjust calibration, 3- Assign values for control samples.

Conclusion

Centralised calibration associated to collective determination of reference values for calibration is considered as an optimum combination to assure harmonisation of milk recording analytical data. Methodologies and technical tools have already been defined, experimented showing large efficiency. Such a combined system should serve ICAR countries to evolve towards easier and cheaper calibration systems and respond to forthcoming analytical demands of milk recording (for instance on-farm analysis).

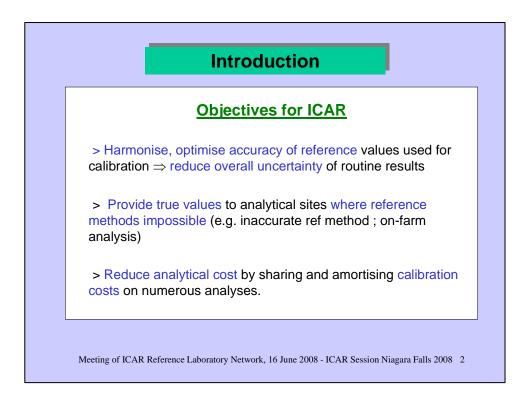
References

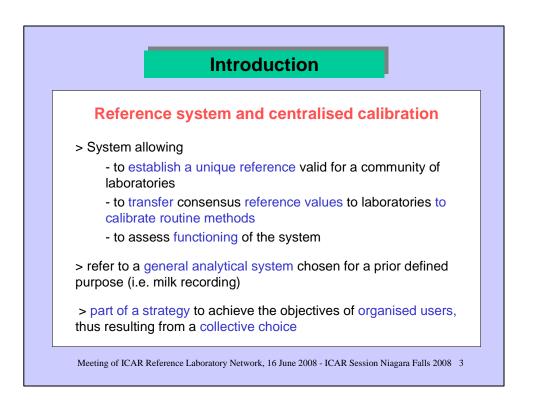
International Dairy Federation, (1999). Quality Assurance and Proficiency Testing. Report of Group E29. Bulletin of IDF 342/1999, 23-30.

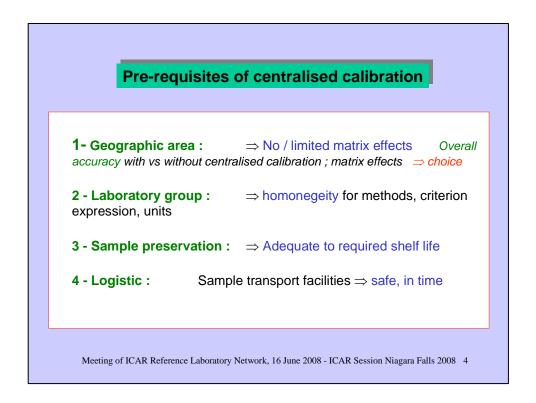
ISO 5725, (1994). Accuracy (trueness and precision) of measurement methods and results - All parts

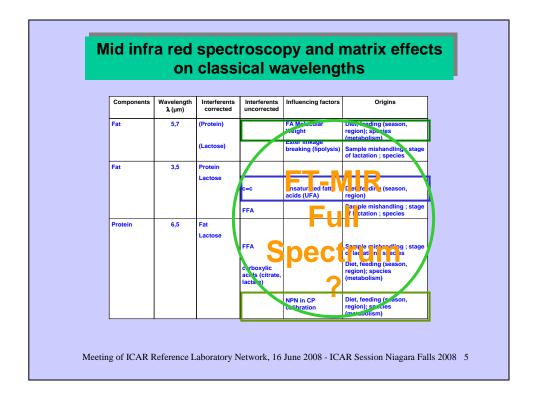
ISO 8196-2:2000 | IDF 128:1999. Milk - Definition and evaluation of the overall accuracy of indirect methods of milk analysis - Part 2: Calibration and quality control in the dairy laboratory.

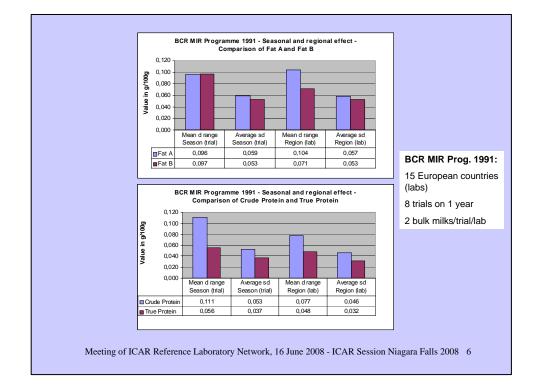
ISO 9622 :1999 | IDF 141:2000 - Whole milk -- Determination of milk fat, protein and lactose content -- Guidance on the operation of mid-infrared instruments.

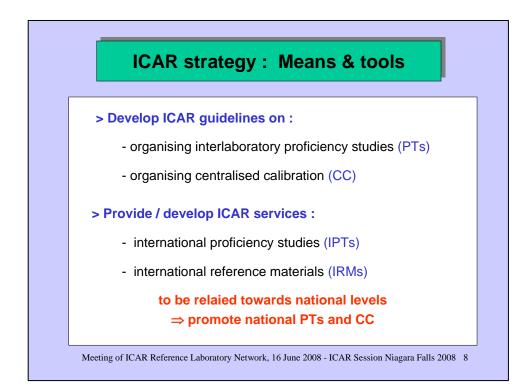

Leray, O., 1988; Protocole de préparation d'échantillons de lait reconstitués destinés à l'étalonnage des appareils infra-rouge. Note Technique ITEB-INRA Poligny n°1, France.

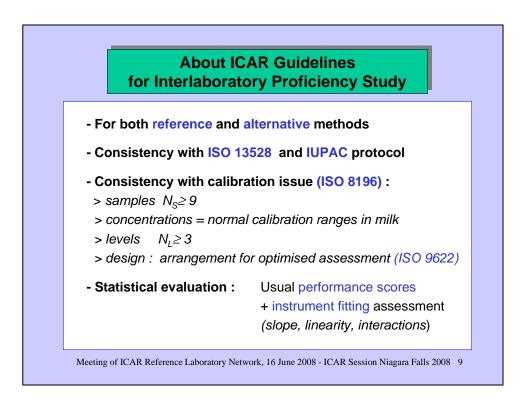

Leray, O., 1989; Ajustement/calcul des intercorrections des spectromètres utilisés pour les dosages TB-TP-TL du lait en moyen infra-rouge. Note Technique ITEB-INRA Poligny n°2, France.

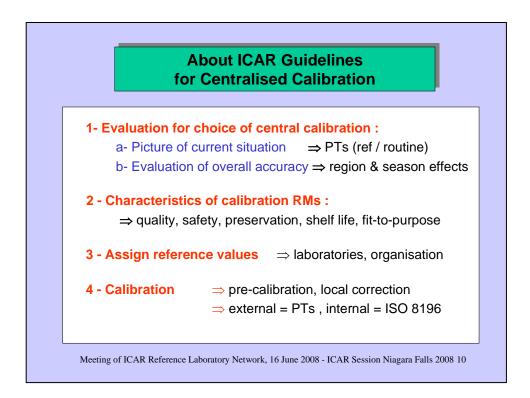

Leray, O., 1990; Procédure d'étalonnage des analyseurs infra-rouge au moyen de gammes d'échantillons de lait reconstitués. Proceedings of the 27th Biennial Session of ICAR. Paris.

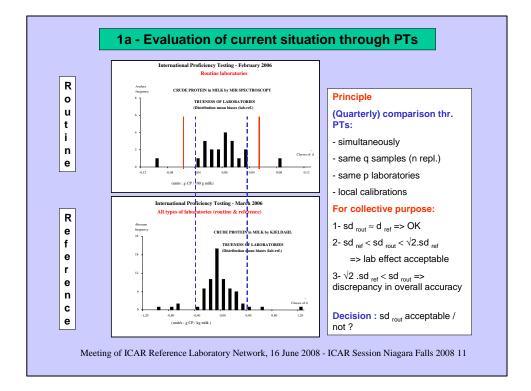

Leray O., (1998): Quality control of conventional mid-infra-red milk analysers using recombined milk samples. Proceedings of 31st Biennial Session of the International Committee for Animal Recording (ICAR). Performance Recording of Animals. State of the art, 1998. EAAP publication n°91, 1998, 131-138.

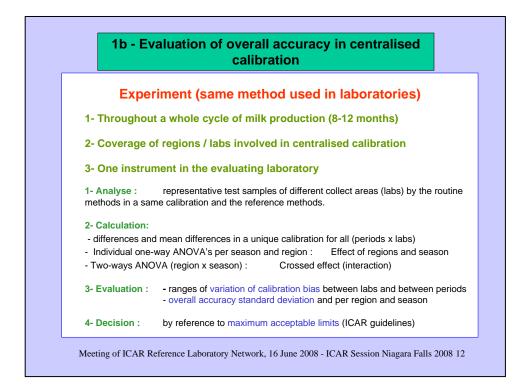


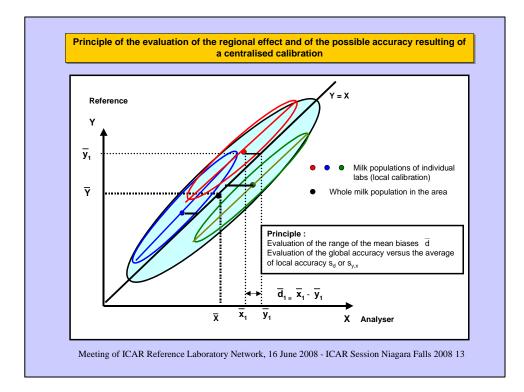


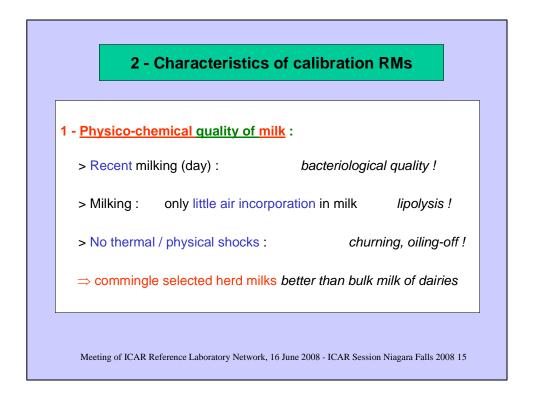


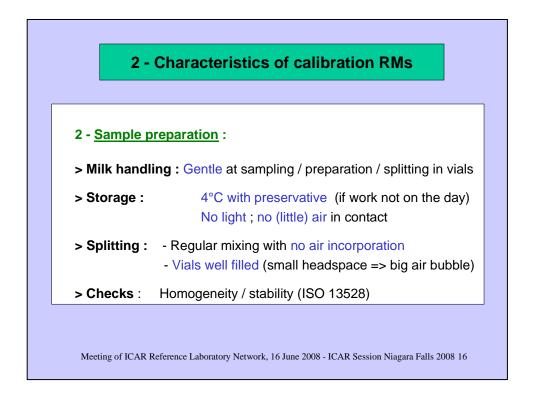


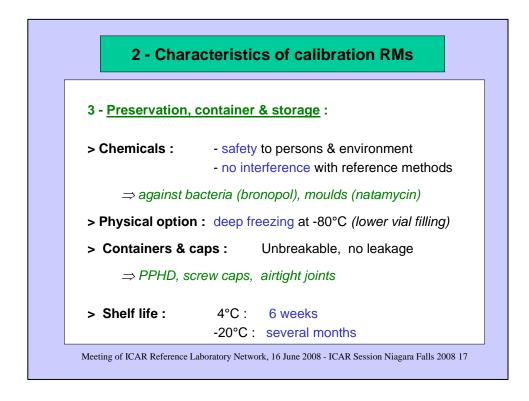


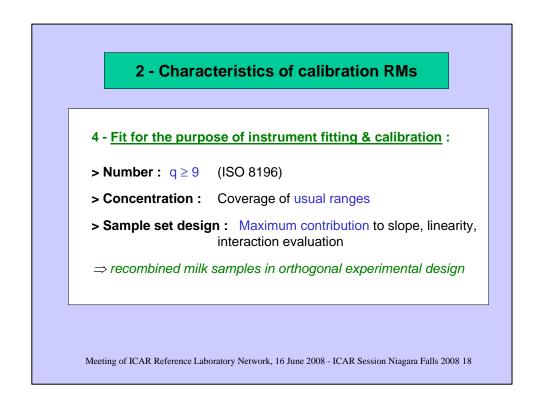

	1 1		T
Variation	Concentration	Range	Trials
Seasonal	0,14 - 0,22 0,14 - 0,24	0,08 0,10	INRA (BCR1992) Cecalait (1992-1996)
Within region	-	0,05	Cecalait (1996)
Between regions (FR)	0,14 - 0,22	0,08	Cecalait (1996)
Between CE countries	0,17 - 0,21	0,04	INRA (BCR1992)

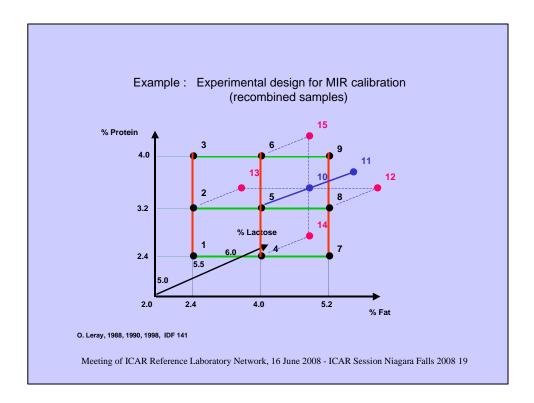


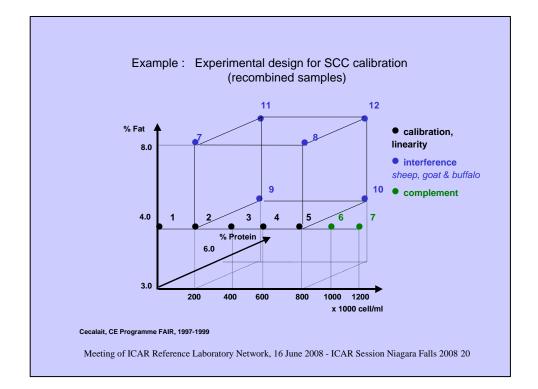


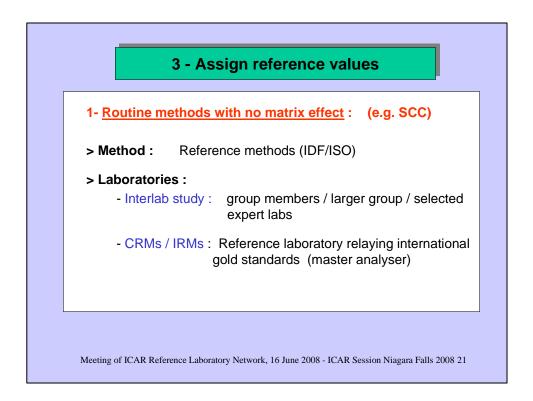


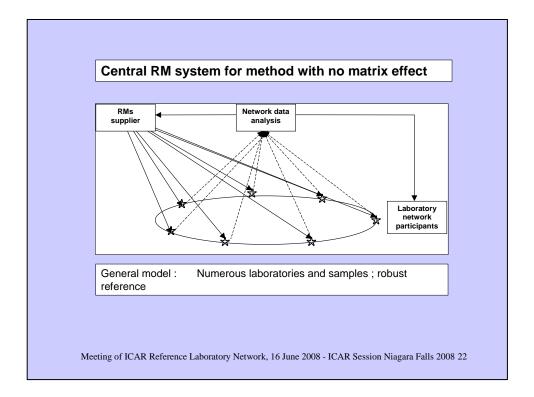


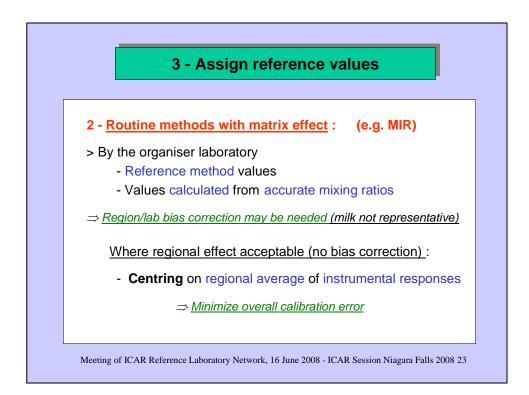


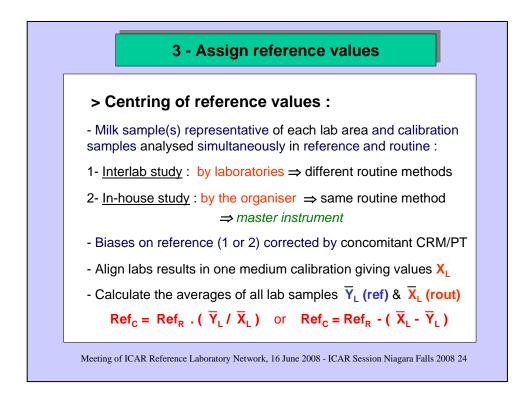

		nean an	d stand	ard dev	viation o	f differend	ces with	n the re	ference	metho	d	
Region	Period j				Period effect per region							
i	1		3		q	d	Sd	sw	sd	F obs	LSD	LSB
1												
2			d ij			d _i .	Sāi.	SW i.	sd _{i.}	F obs	LSD _{i.}	LSB
			sd _{ij}									
р					d pq	d _p .	Sāp.	SW _{p.}	sd _{p.}	F _p .	LSD _{p.}	LSB
					sd _{pq}							
	Region	effect	per perie	od				Glo	bal ana	lysis		
d			d .,		d .,	d	$\mathbf{S}_{O\ \overline{d}}$	SW	sd	FΡ	LSD	LSB
Sd			Sā.j			Sp d						
sw			SW.j		SW .q	sw						
sd			sd .j		sd.q	sd "			sd			
F			F .,		F .q	Fo						
LSD			LSD.j		LSD.q	LSD.					LSD.	
LSB			LSB.		LSB.a	LSB						LSB

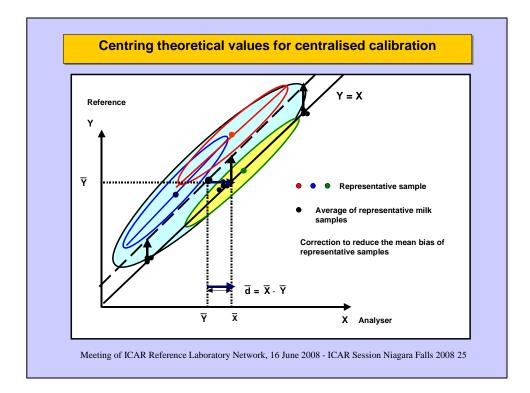


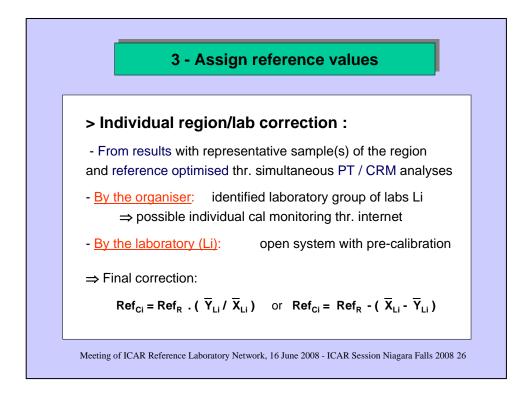


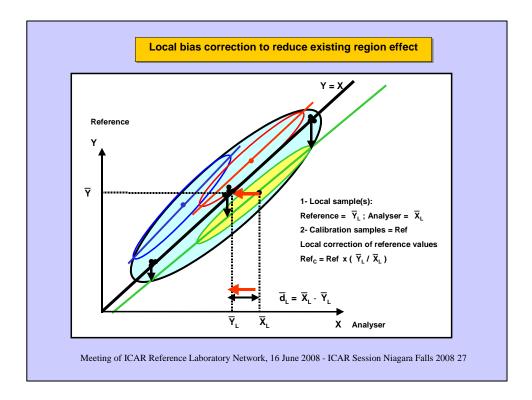


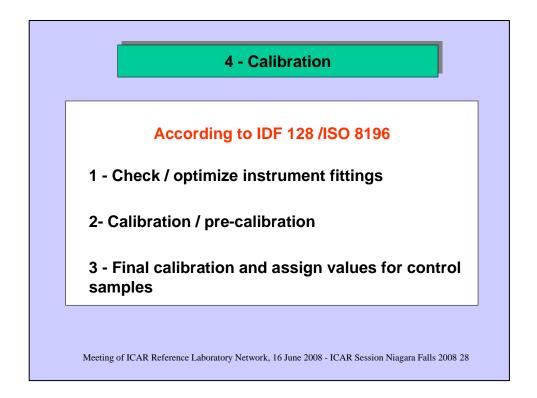


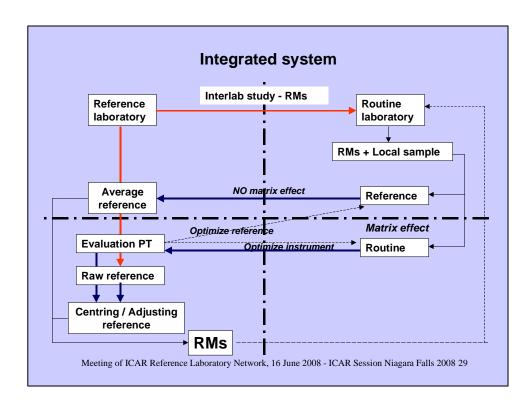


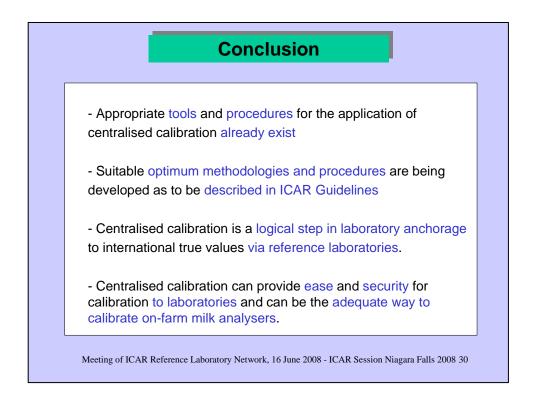

Interlaboratory reference system & centralised calibration - Pre-requisites and standard optimum procedures











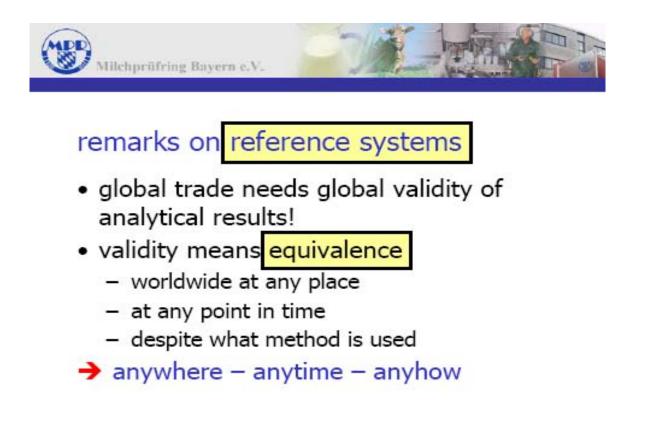
The way to reference systems and centralised calibration for milk recording testing – Present status in Germany

Christian Baumgartner¹

¹ MILCHPRUEFRING BAYERN e.V., Hochstatt 2, D-85283 Wolnzach, Germany

Abstract

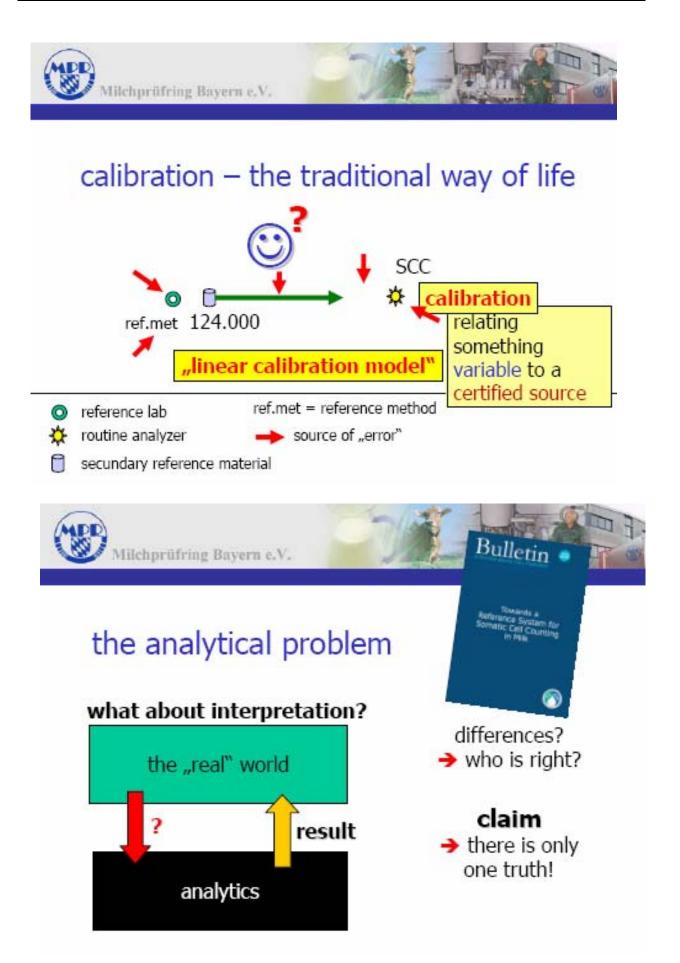
In a globalizing world analytical results play a major role in free and fair trade. Global trade needs global validity of analytical results! This means that analytical results have to be equivalent worldwide at any place, at any time and despite what method has been used.

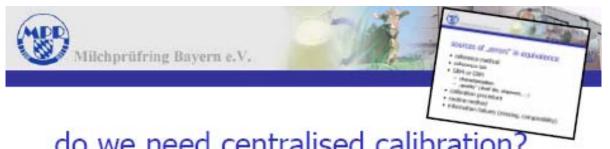

Some sources of error are affecting this analytical equivalence: Bad performance of reference methods and/or reference labs in characterizing (secondary) reference materials, insufficient reference materials in terms of imprecise target values and/or problems with shelf life, shipment etc. and failures in calibration of routine methods as well as information gaps and misinterpretations are hindering the optimal use of capabilities.

IDF has started a discussion about how to cope with these problems. In Bulletin 427/2008 a paper outlines the way towards a reference system for somatic cell counting as an example of how to come to a solution.

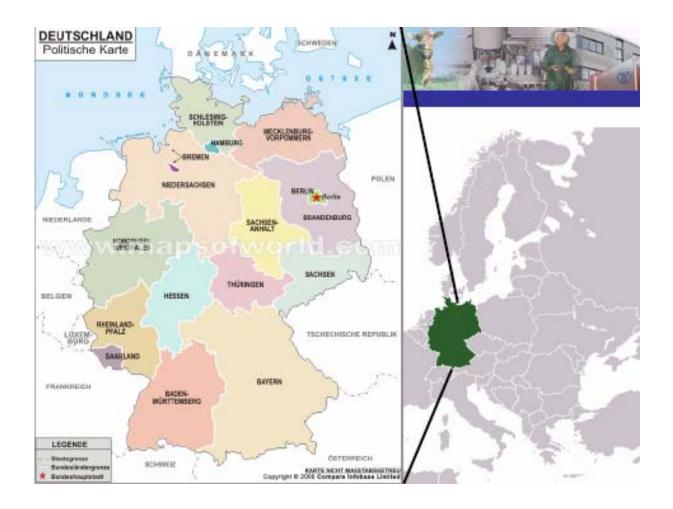
In this paper the author deals with the present status of implementing such a reference system in Germany. After a short description of the dairy sector in Germany and especially Bavaria, a picture is drawn of the DHI system and the laboratory work. Different aspects of QA in laboratories and the interlaboratory reference system in Germany are highlighted and it is shown, how the German system is interlinked with the ICAR Reference Laboratory System.

The author strongly pleads for cooperation between analysts on all levels. ICAR should join the IDF activities and assist in creating an international structure for reference systems. Centralized calibration procedures could be one of the tools to step forward.


Keywords: analytical reference systems, centralised calibration, equivalence of analytical results, dairy sector in Germany, interlaboratory reference system;



sources of "errors" in equivalence


- reference method
- reference lab
- SRM or CRM
 - characterization
 - "quality" (shelf life, shipment, ...)
- calibration procedure
- routine method
- information failures (missing, comparability)

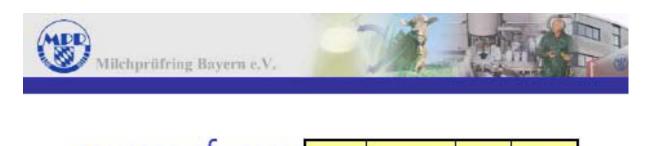
do we need centralised calibration?

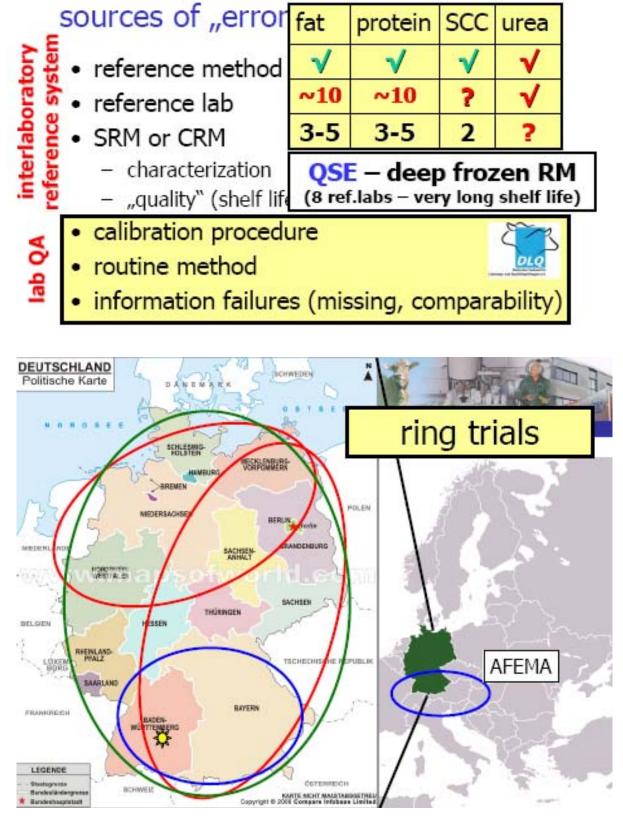
- we need calibration, because we have to use routine methods
 - high throughput
 - high performance (precision characteristics)
 - data availability and handling
 - low labour, low costs
- traditional linear calibration schemes have to be interlinked to reduce equivalence failures

The way to reference systems and centralised calibration for milk recording testing - Present status in Germany

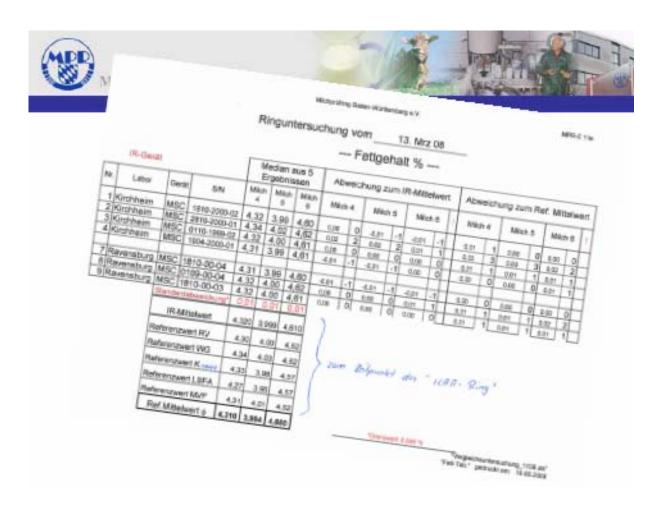
situation in Germany (12.2007)

- 65.850 farms under DHI (of 95.870)
- 3.514.000 cows under DHI (of 4.730.000)
- ~35 mio. DHI samples
- 19 labs, ~330 staff
- ~50 kombi-analyzers


sources of "errors" in equivalence


- reference method
 - reference lab
- eference sy SRM or CRM

interlaborator


ab QA

- characterization
- "quality" (shelf life, shipment, ...)
- calibration procedure
- routine method
 - information failures (missing, comparability

The way to reference systems and centralised calibration for milk recording testing - Present status in Germany

outlook

- Analytical people are more and more aware that equivalency means cooperation on all levels – locally – nationally – internationally!
- International structures for implementation of reference systems are missing so far. What can ICAR do?
- Joint new work item with IDF on reference systems! Centralised calibration is one issue...

Reference system and centralized calibration for milk recording testing in Argentina

Lic Roberto Castañeda

INTI Lácteos. Buenos Aires, Argentina.

Introduction

Milk production in Argentina was over 10 billion liters in 2006. This figure positions the country in the 11th place in the ranking of world milk producers, and in the 2nd as regards Latin America. There are 2.5 million dairy cows, most of them pertaining to *Holando-Argentina* breed, producing approximately 4000 liters of milk/cow/year. The Argentine dairy industry is geographically distributed all over the country. Five provinces making up the so-called Pampeana Region produce 94% of the milk in a surface area of 800,000 square kilometers. The country has 14,000 dairy farms and 1100 dairies of different sizes where milk products are manufactured. This milk is mainly used in the production of cheese (45%); milk powder (24%); pasteurized and sterilized fluid milk (19%) and other products.

The "*Holando- Argentina*" breed was introduced into Argentina from Holland in 1880. These cows are medium sized with the height of 1.40 to 1.5 meters, having a large barrel allowing them to have a high intake of forage. In 1944, breeders create an organization to promote the breed and to provide necessary technical support named *Holando- Argentina* Breeders Association, ACHA. In 1981, the government (Department of Agriculture) delegate by law the "official dairy herd improvement" system in ACHA. The breeder association is a full member of ICAR in 1991 and subscribed an agreement with INTI, the National Institute of Industrial Technology in 2003, for the creation of a technical assistance and control laboratory network that began to work the follow year, committing DHI laboratories to participate in proficiency testing schemes under REDELAC, the network of INTI.

Milk control in Argentina

Since early in the 20th Century milk producers in the Argentine Republic started to control their cows' production with the purpose of improving cattle quality. Nowadays we have: 2.000 dairy farms in "official milk control", 510.000 cows under this system, 11 DHI laboratories that analyze the composition of the milk and a reference national laboratory that control the performance of DHI laboratories. Tests carried out include milk fat and protein content, and somatic cell count.

Testing laboratories for milk recording

There are currently 11 laboratories conducting tests for official milk control in different provinces. Most of them are private and/or provincial laboratories, independent of producers or of the industry, supplying services to the milk chain, essentially as regards milk control, milk payment according to quality standards and other process control tests. Testing laboratories are distributed in different provinces according to the list in Table 1.

On a monthly basis, results obtained at these laboratories participate in control schemes with the National Reference Laboratory namely INTI-LÁCTEOS who has, jointly with ACHA, the mission to supervise the laboratories supplying services to Official Milk Control Entities, as well as to provide technical support in equipment calibration and training the corresponding human resources.

NAME	CITY	PROVINCE	BELOGS TO
ALECOL .	Esperanza.	Santa Fe.	Milk producers
CERET	General Pico	La Pampa	Provincial state
FUNESIL	Villa Maria	Cordoba	Private
INSULAB	Venado Tuerto	Santa Fe	Private
LABROLAC	Las Varillas	Cordoba	Milk producers
LABVIMA	Trenque Lauquen	Buenos Aires	Private
LABVIMA	Villa Maria	Cordoba	Private
LACLE	Buenos Aires	Capital Federal	Private
LEVER	Paraná	Entre Rios	Provincial
MATCO	Lujan	Buenos Aires	Private
SANCOR	Sunchales	Santa Fe	Dairy Industry

Table 1. List of milk testing laboratories operating for milk recording in Argentina

National reference laboratory

INTI LÁCTEOS is the laboratory appointed by ACHA as the reference laboratory, with vast experience in technical assistance to milk labs; it is also the supplier of interlaboratory trials and reference materials. In turn, and complying with ICAR instructions, ACHA has requested the inclusion of INTI Lácteos as the national reference laboratory (NRL) for Argentina in ICAR laboratory network.

INTI LACTEOS is the Technological Research Center for the Milk Industry and was created in 1968. It is one of the nearly 40 INTI centers, the National Institute of Industrial Technology, a decentralized entity depending upon the Argentine Ministry of Economy. INTI, among many other responsibilities, is the National Metrology Institute in Argentina.

Seventy five professionals and technicians work at INTI LÁCTEOS, providing consultancy and technical support to all links in the milk chain, and among them, to testing laboratories. The center is headquartered in the city of San Martin, in the province of Buenos Aires and in the city of Rafaela, in the province of Santa Fe. Its scope includes training, assistance, development, innovation and testing activities. INTI LACTEOS has laboratories for milk quality, physicochemical testing, microbiology, residues and contaminants, sensory evaluation, and others.

In compliance with ICAR requirements regarding the mandatory character of maintaining certified quality systems, INTI Lácteos labs in Buenos Aires and Rafaela conduct analytical assessments, organize proficiency test programs and supply reference milk material pursuant to ISO 17025, ISO 43, ILAC G13, and ISO 34 systems, certified by the official Argentine Accreditation Body (OAA) and the National Accreditation Entity of Spain (ENAC).

Since 1991 INTI LÁCTEOS has also been the reference laboratory for REDELAC (www.redelac.gov.ar), a network of Argentine milk laboratories developed by INTI itself, whose purpose is to provide such laboratories with the tools to maintain their technical competence. Milk industry laboratories are included in this network; there are many of them with high technical competence, and some of food laboratories in general. INTI LÁCTEOS maintains a wide suitability testing program for different milk matrixes that has been accredited by ENAC since 10/15/04, through Certificate 001/PPI001. It has also developed a centralized calibration system for milk analysis instruments, called SICECAL, currently in the certification process under ISO 34 Standard.

Assistance and external control of milk testing laboratories

Technical assistance and control of milk testing laboratories result from a wide experience in this field, where work has been done since 1991 in order to obtain homogeneity in results and maintain

metrological traceability between the testing laboratory, the national reference laboratory and international labs.

Assistance consists in training actions, both in analytical tests subjects and in quality assurance subjects. Laboratory control is carried out through a scheme based on 1) centralized calibration, 2) control of performance of laboratories and 3) an evaluation of the laboratories by an ACHA-INTI committee to ascertain its performance and to set the adequate corrective actions if required.

1- Centralized calibration system SICECAL:

SICECAL is a system of preparation, analysis and delivery of reference materials in dairy matrix for calibration and control equipment. It is a widely used tool in Argentina to calibrate different types of analyzers used in milk laboratories. It consists in sending monthly standard samples for

- calibration of infrared analyzers (fat, proteins, totals solids, lactose, ash)
- adjustment of fluoro-opto-electronic equipment for somatic cell count
- calibration of milk cryoscopes
- others

The use of these Reference Materials is not mandatory, and this is so since there are big laboratories that prepare their own materials.

This Reference Materials are produced in INTI Lácteos in Rafaela according the requirements of the guide ISO 35. For calibration or IR equipment, 11 and 5 samples of raw milk are sent in *the first week* of the month. Composition: fat: 2.50 to 5.00 g/100 ml, protein: 3,00 to 3.60 g/100 ml, lactose: 4.60 to 5.00, ash: 0.68 to 0.82 and dry matter content: 11.80 to 13.80. Milk composition is informed with the pertinent uncertainty. Participants receive a delivery schedule early each year.

For adjustment of somatic cell equipments, 3 samples of raw milk are sent in the first week of the "pair" months. Composition: "low" somatic cells counting (170.000 cel/ml); "medium" (430.000 cel/ml); and "high" (700.000 cel/ml).

Samples are prepared with mixed raw milk. The reference value is obtained by IDF reference methods in quadruplicate. There are checks of the reference value (named "previous SICECAL") where the laboratory test the value in four (4) IR-equipment or SC-equipment in other recognized laboratories. Test of homogeneity and stability are performing according to the requirements in guide ISO 35. With these samples, laboratories calibrate, re-calibrate, verify or adjust testing equipment.

2- Performance assessment of DHI laboratories:

The control of performance of DHI laboratories is carried out through two types of actions.

- *Monthly check* of results of laboratories. Every second Tuesday of the month, (one week after centralized calibration), laboratories receive one sample to analyze fat, total proteins and somatic cells count by their routine methods. They are obliged to send results in time to INTI Lácteos.
- An Bi-annual interlaboratory trial. Each six month, the laboratories receive 10 samples to analyze fat, total proteins and SCC. They must submit results in time to INTI Lácteos.

In the *monthly check* DHI laboratories receive one blind sample for each parameter to check, to be analyzed in a period of time. The comparison of results with INTI Lácteos permit assures the suitability of the equipment to conduct milk control tests. Samples are prepared with mixed raw milk. Composition: 2.5-4% of fat, 2.8-3.5% total proteins, 100.000-700.000 SCC, and others. Test of homogeneity and stability are performing according ISO 13528 standard. Usually, as these laboratories also analyze samples for milk payment purpose, they also receive additional samples to check the results of other milk quality parameters (antibiotic residues, bacteria total count and freezing point). It is interesting to remark that logistics for sending these samples is not a minor topic, since samples have to arrive at laboratories in time and good state of preservation.

Results of laboratories are compared against the reference value obtained by INTI Lácteos in Buenos Aires by using IDF reference methods, and applying an ISO 17025 quality system accredited by the OAA. The reference value must be not statistically different of the robust media (26 laboratories nowadays). If

yes, the NRL studied the reason and decide which reference will be use. Next, a results report is issued where it is shown whether results obtained for each test are comparable to results obtained by NRL, the performance of the latest 12 month of the laboratory and a comparison of the laboratory with the other laboratories participating in the PT scheme.

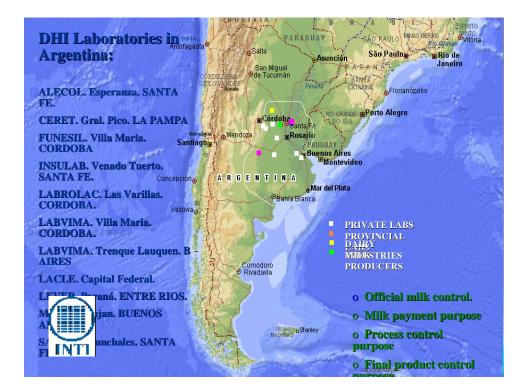
In the *bi-annual interlaboratory trial*, laboratories must participate in a proficiency test where 10 samples with variable percentages of fat, protein, lactose, total solids content and somatic cell count are sent. This inter-comparison scheme is improved under an ISO 43 / ILAC G13 quality system accredited by ENAC. The NRL send 10 different samples for each component. They are prepared with raw milk as IDF Standard 141:2000 by separation and recombination of components. The composition is: range of 2.5-4 % for fat; 2.5-3.5 % for total proteins; and 100.000-700.000 for SCC. Test of homogeneity and stability are performing according ISO 13528. The reference value is obtained by consensus of all laboratories, calculating robust media. INTI Lácteos analyze also the samples by IDF reference methods, in duplicate, to assure results.

3- Evaluation of results:

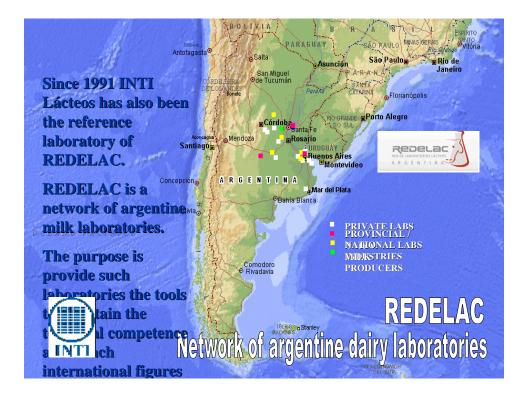
The results of these reports are analyzed by an INTI-ACHA Advisory Committee created within the framework of the technological linkage agreement subscribed by both institutions. This advisory committee hold meeting every two month and decides the actions to follow according the evaluation of each laboratory.

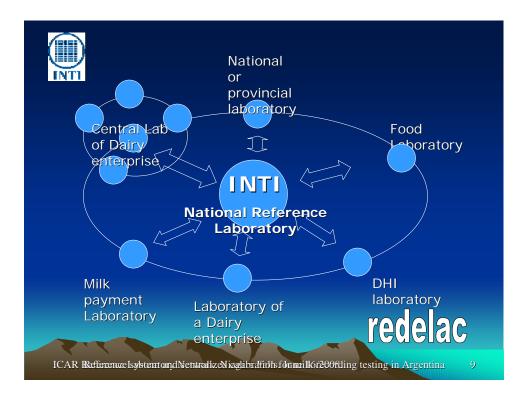
Conclusion

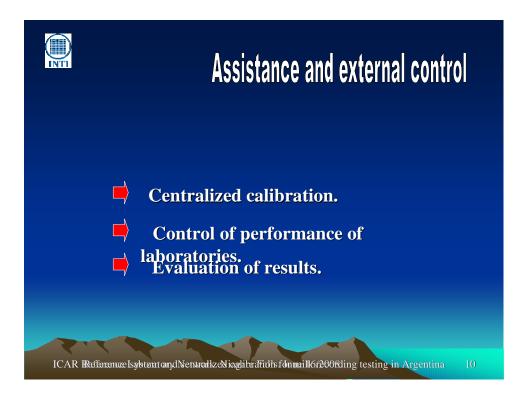
The reference system for milk recording testing in Argentina is based on the action of a national reference laboratory and DHI dairy laboratories, which interchange information, technical assistance and control mechanisms. The characteristics of our country and our milk permit a centralized calibration of testing equipment and a frequent control of milk recording testing laboratories. At a time, the NRL check your own performance by means of PT schemes with international institutions. These metrological scheme permit Argentina maintain a good traceability between laboratories and international institutions by means of inter-comparisons. This characteristics show a metrological system for milk measurements according the importance of the argentine dairy industry.



ICAR Reference Isylstem and Nentralized iced braffolts for mail 6/200 Rding testing in Argentina







Reference system and centralized calibration for milk recording testing in Argentina

* calibration of infrared analyzers (fat, proteins, totals solids, lactose, ash)

* adjustment of fluoro-opto-electronic equipment for somatic cell count

This Reference Materials are produced according the requirements in guide ISO 35.

11 and 5 samples of raw milk are sent in *the first week* of the month. Composition: fat: 2.50 to 5.00 g/100 ml, protein: 3,00 to 3.60 g/100 ml, lactose: 4.60 to 5.00, ash: 0.68 to 0.82 and dry matter content: 11.80 to 13.80

dry matter content: 11.80 to 13.80. 3 samples of raw nulleare sent in Line first weak line at 10 months. Composition: somatic cells counting w (172.01) cel/ml); medium (430.000 cel/ml); and high ICAR Reference Lybrent and NentralizeNicadibrafforts formatil Kof200Rilly g testing in Argentin.

With these samples, laboratories calibrate, re-calibrate, verify or adjust testing equipment.

Samples are prepared with mixed raw milk.

Reference value: by IDF reference methods (quadruplicate).

Check of the reference value (previous SICECAL): in 4 IRequipment or SC-equipment in recognized laboratories.

Test of homogeneity and stability. According to the requirements in guide ISO 35 and the document "Statistical Aspects of the certification of chemical batch SRMs of the NIST.

centralized calibration

ICAR Reference Isystem and Nentralized inglibrations formaille feedbaling testing in Argentina

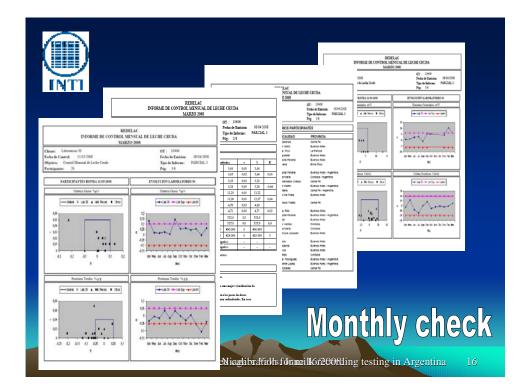
 Monthly check of results of laboratories. Every second Tuesday of the month, (one week after centralized calibration), laboratories receive one sample to analyze fat, total proteins and somatic cells count by their routine methods. They are obliged to send results in time to INTI Lácteos.

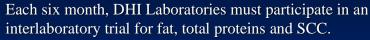
Bi-annual interlaboratory trial. Control Geographic formation in the cale of a but shall be analyzed fat, aboratories

total proteins and SCC. They must submit results in time to INTI ICAR Reference Isystemand Nentional Content in Argentina Lácteos

DHI Laboratories are controlled by the INTI Lácteos by comparison of the results with these samples.

This inter-comparison scheme is improved under an ISO 43 / ILAC G13 quality system.


Samples are prepared with mixed raw milk. Composition: 2.5-4 % of fat, 2.8-3.5 % total proteins, 100.000-700.000 SCC, and others.

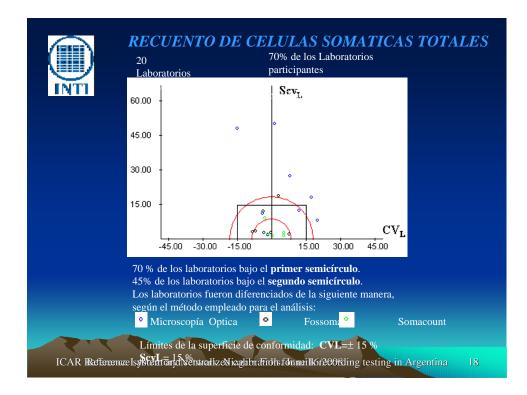

Test of homogeneity and stability. According ISO 13528.

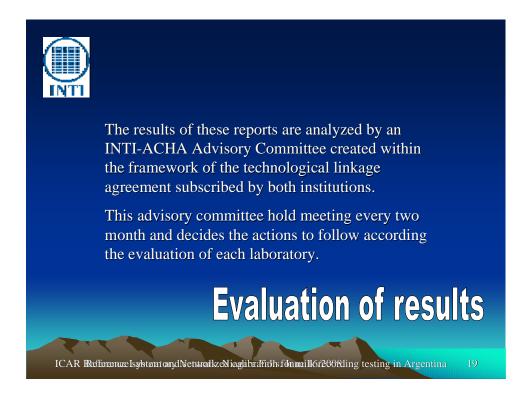
Results of the laboratory are compared against the reference value.

Reference value: by IDF reference Menatopicaneck

Check of the reference value: the reference value must be ICAR Reference value in the robust media (of 26 Argentina 15 Laboratories). If yes, the NRL studied the reason and

This inter-comparison scheme is improved under an ISO 43 / ILAC G13 quality system accreditated by ENAC.

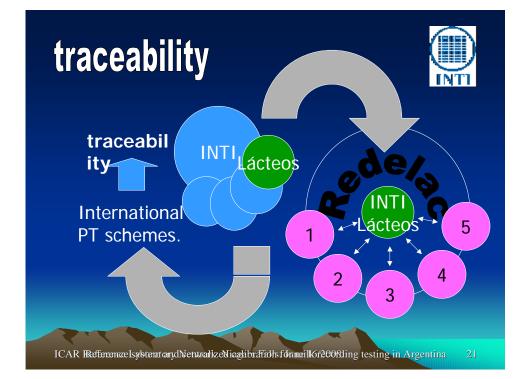

The NRL send 10 different samples for each component. They are prepared with mixed raw milk as IDF Standard 141:2000 (separation and recombination of components).


Composition: range of 2.5-4 % for fat; 2.5-3.5 % for total proteins; and 100.000-700.000 for SCC.

Test of homogeneity and stability. According ISO 13528.

Reference value: by consensus of all laboratories, calculating robust media. INTI under and yzel for a defailed by the second state of the second

ICAR Reference Isystem and NetwalizeNicalibrations formails feedback in Argentina



These metrological scheme permit Argentina maintain a good traceability between laboratories and international institutions by means of inter-comparisons.

ICAR Reference Isylstent and Nentralize Nicelibra finds formail Kore Ording testing in Argentina

The reference system for milk recording testing in Argentina is based on the action of a national reference laboratory and dairy laboratories, which interchange information, technical assistance and control mechanisms.

The characteristics of our country and our milk permit a centralized calibration and a frequent control for milk recording testing.

In this way, Argentina maintains a good traceability scheme between laboratories and international institutions by means of inter-comparisons.

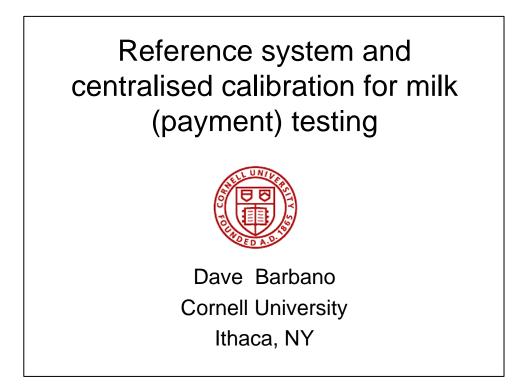
This characteristics shows a metrological system for milk measurements according the importance of the ICAR rangentine_dairy/eindustry/abr/ariths/formaillo/2008ting testing in Argentina

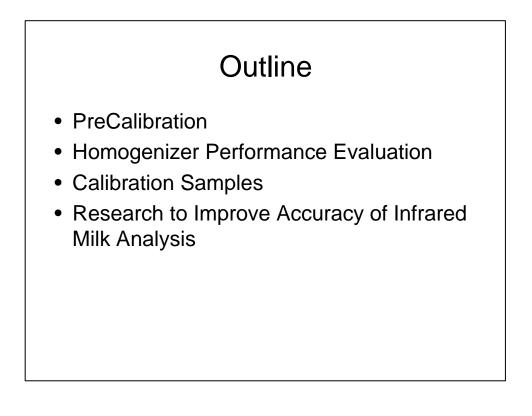
74

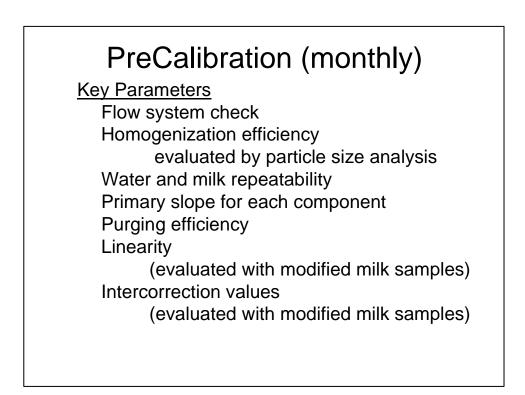
Reference system and centralised calibration for milk (payment) testing

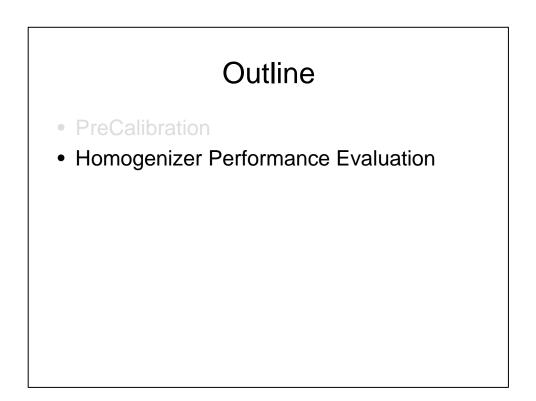
David Barbano

Cornell University, Department of Food Science, Ithaca, NY 14853, USA


Abstract


A modified milk calibration set has been developed for use in a network of payment testing laboratories in the US. The ser of calibration samples consist of 14 samples produced with an orthogonal matrix of composition with respect to variation in fat, protein, and lactose. The range of fat content is from 0.2 to 5.8%, true protein from 2 to 4.3%, and anhydrous lactose from 3.9 to 5.2%. The modified milk calibration samples are produced 12 times per year and serve as a proficiency test for the reference chemistry methods performed in all the laboratories and a set of calibration samples for infrared milk analyzers. These samples are used to set slope and intercept of the intercorrected mid-IR signal.


The modified milk calibration samples serve three purposes. First, each month the testing of these samples provides a proficiency test of the fat by ether extraction, the true protein by Kieldahl, the anhydrous lactose by enzymatic, and total solids by oven drying methods. The orthogonal matrix of composition of the set of samples provides some interesting diagnostic and trouble shooting opportunities that are used to improve the performance of the laboratories that run the chemistry methods. The performance of individual laboratories and the group of laboratories for the chemistry methods has been improved. Second, the all-laboratory mean with outliers removed is used to create a fat, protein, and lactose reference value for each sample. Third, the samples are used for 1 month to set the slope and intercepts for each instrument. Because of the orthogonal matrix of composition, the data can be used to evaluate the linearity and intercorrection response of each instrument. These evaluation calculations and protocols are built into a software package we have written called IR-QC. Instrument Calibration Performance has been improved by using the modified milk calibration samples and all-lab mean reference values. The standard deviation of the difference between reference chemistry and instrument values on all components is < 0.015% and often < 0.01% using a traditional filter based calibration The size of the 95% confidence interval around the slope of the regression line has been approach. reduced greatly by the use of the modified milk calibration samples, compared to the performance that is achieved by using raw milks from individual farms for calibration. This is due to the homogeneity of the matrix of the modified milks and elimination of the influence of high leverage samples from the calibration set.

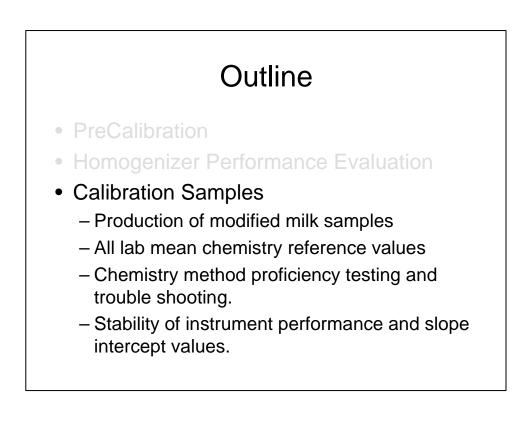

The network of laboratories does monthly pre-calibration performance evaluations of instrument performance. Homogenizer performance is monitored by a central laboratory at Cornell University using laser light scattering particle size analysis. Homogenizers that have failed the homogenization performance evaluation by particle size analysis are inspected by microscopic evaluation to determine the cause of failure.

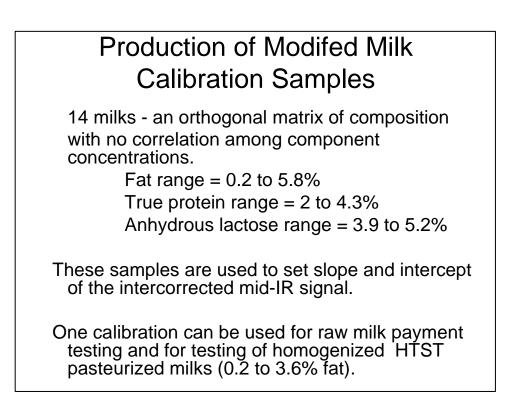
In our research we have developed an optimized set of traditional "virtual" sample and reference filter wavelengths for use in FTIR instruments and we are in the process of publication of that information. We have also made a quantitative determination of the impact of variation in fatty chain length and unsaturation on Fat B and Fat A on absorbance at sample and reference wavelengths with a model sample system. That work is complete and in the process of publication. We continue to work toward the goal of improving the accuracy of the infrared milk testing to achieve the most accurate testing results on any instrument, on any sample, at any time.

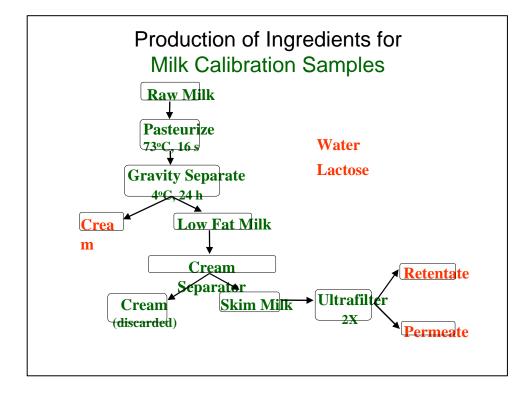
Homogenization Efficiency Testing (monthly)

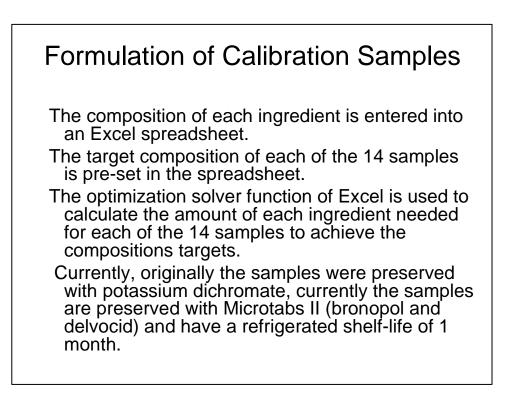
Three vials pasteurized, unhomogenized milk are sent from Cornell to each lab per instrument each month.

The milk is warmed to 42°C, pumped through the instrument and the instrument homogenized is collected from the by-pass outlet, immediately cooled, and shipped back to Cornell. Each samples is test by laser light scattering to determine the fat globule size distribution. We recommend that a lab replace the homogenizer when the the d(0.9) of the particle size distribution reaches 1.7 microns.

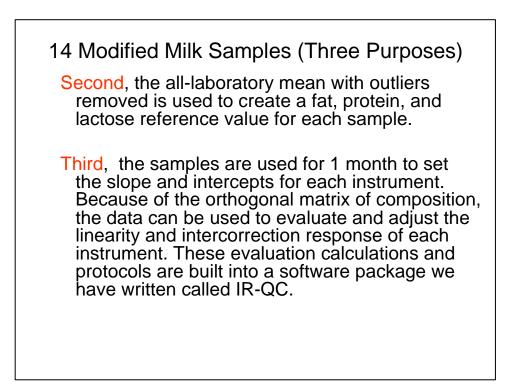

Homogenization Efficiency Testing (monthly)


Recently, we have also started investigating why homogenizers fail. Laboratories send the failed homogenizer to Cornell and we disassemble the homogenizer. We conduct a microscopic examination of the internal parts to try to determine the cause of the homogenizer failure.


Also, when possible, we check the performance of new homogenizers before they are installed on an instrument.


Primary Slope Control (monthly)

When primary slope (i.e., gain) of the primary signal for each measured component is set in a one to one relationship with the change in concentration of that component, the intecorrection factors from one instrument the next become almost identical, particularly among FTIR instruments run in traditional filter mode.



Calib	oration	Sample	e Set – J	lune
Sampla	Sec. Fat	Protein	Solids	Lactose
	0.2115	4.2463	9.5861	4.0373
2	0.6432	2.2219	8.4074	4.5166
3	1.1157	3.9037	11.3312	5.1119
4	1.5164	2.5634	10.1098	4.9405
5	1.9464	3.5745	10.9290	4.3015
6	2.3774	2.9012	10.9171	4.5483
7	2.8082	3.2422	11.7286	4.5522
8	3.2425	3.0787	11.8243	4.4113
9	3.6722	3.4097	12.9167	4.6744
10	4.1084	2.7470	11.9975	4.1303
11	4.5460	3.7498	14.3034	4.8308
12	4.9743	2.4132	12.3422	3.9908
13	5.4067	4.1000	15.2816	4.5721
14	5.8312	2.0783	14.0166	5.0522
Mean	3.0286	3.1593	11.8351	4.5479
min	0.2115	2.0783	8.4074	3.9908
max	5.8312	4.2463	15.2816	5.1119
range	5.6197	2.1681	6.8742	1.1211

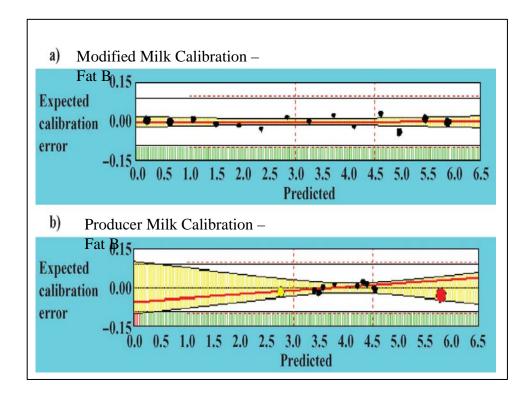
First, each month the testing of these samples provides a proficiency test of the fat by ether extraction, the true protein by Kjeldahl, the anhydrous lactose by enzymatic, and total solids by oven drying methods. The orthogonal matrix of composition of the set of samples provides some interesting diagnostic and trouble shooting opportunities that are used to improve the performance of the laboratories that run the chemistry methods.

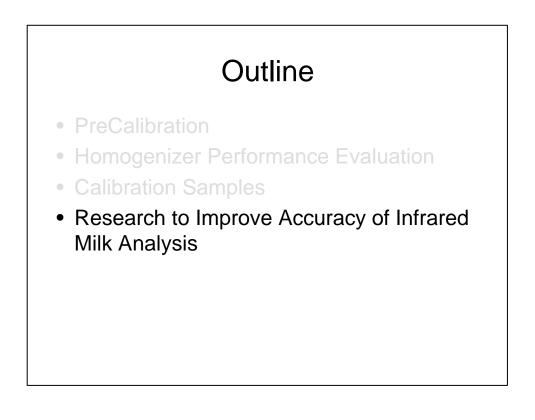
The performance of individual laboratories and the group of laboratories for the chemistry methods has been improved.

14 Modified Milk Samples

Instrument Calibration Performance:

Standard Deviation of the Difference (SDD) between Reference Chemistry and Instrument Predictions


Before we started using the modified milks, the SDD with producer calibration samples generally were never less than 0.025% for any component.


14 Modified Milk Samples

Instrument Calibration Performance:

With Modified Milks and all-lab mean reference values, the SDD on all components is < 0.015% and often < 0.01%.

The size of the 95% confidence interval around the slope of the regression line has been reduced greatly by the use of the modified milk calibration samples.

Reference system and centralised calibration for milk (payment) testing

Research to Improve Accuracy of Infrared Milk Analysis

 Development of an optimized set of traditional "virtual" sample and reference filter wavelengths for use in FTIR instruments. – status: complete and in process of publication.

Research to Improve Accuracy of Infrared Milk Analysis

- Quantitative determination of the impact of variation in fatty chain length and unsaturation on Fat B and Fat A on absorbance at sample and reference wavelengths with a model sample system. – status: complete and in the process of publication.
- Verification of the chain length and unsaturation impacts with producer samples. – status: complete and in the process of publication.

Research to Improve Accuracy of Infrared Milk Analysis

 Develop an improved traditional "virtual filter" calibration approach that minimizes the impact of variation in fatty acid chain length and unsaturation. - status: work in progress.

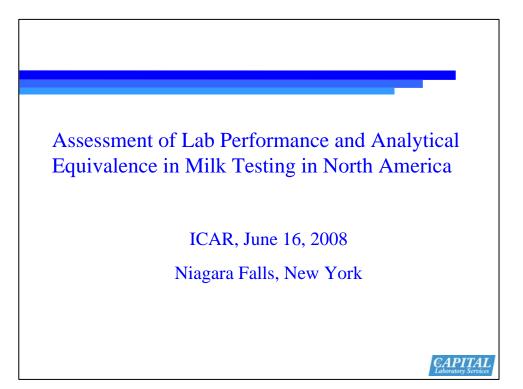
Research to Improve Accuracy of Infrared Milk Analysis

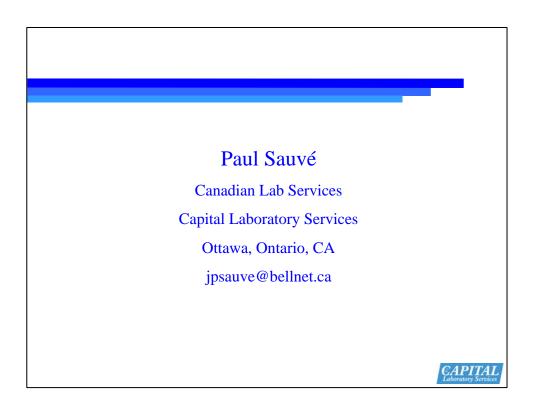
- Determine the impact of various preservatives on infrared uncorrected signals initially and during calibration sample shelf-life – status: data collection is complete.
- Develop a set of unpreserved modified milk samples that have a refrigerated shelf life of 1 month – status work in progress with some success.

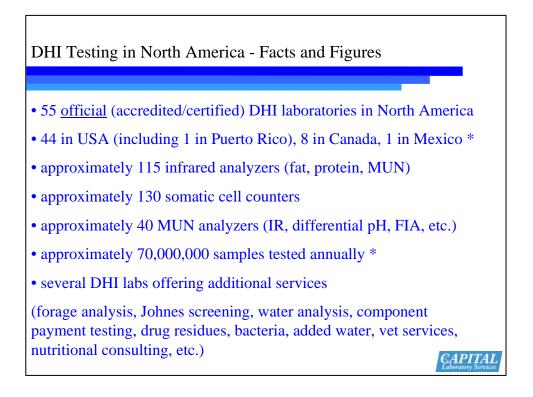
Research to Improve Accuracy of Infrared Milk Analysis

 Continue to implement and apply new statistical quality control tools in IR-QC to calibration data to improve the accuracy of milk testing.

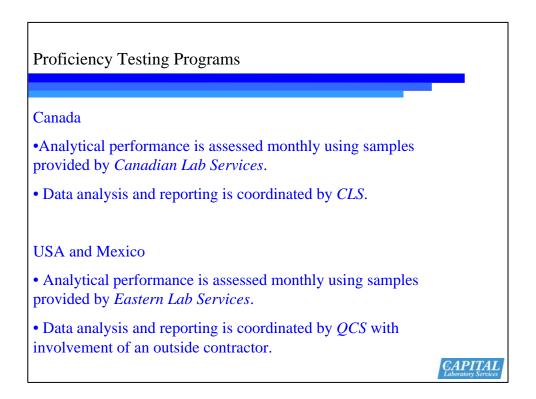
Acknowledgments Test Procedures Committee of the USDA Federal Milk Markets. Laboratory staff at Cornell and the USDA Federal Milk Market laboratories and affiliated laboratories. Mid-infrared equipment manufacturers for their support and collaboration.

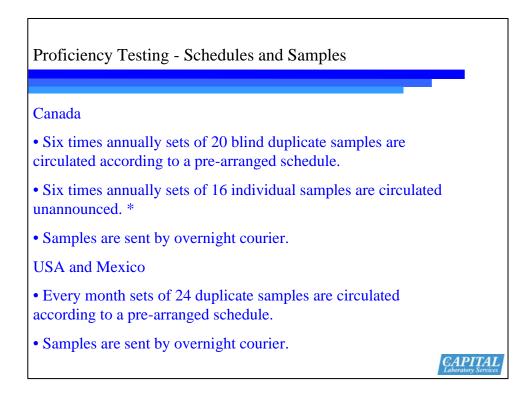

Assessment of Lab Performance and Analytical Equivalence in Milk Testing in North America

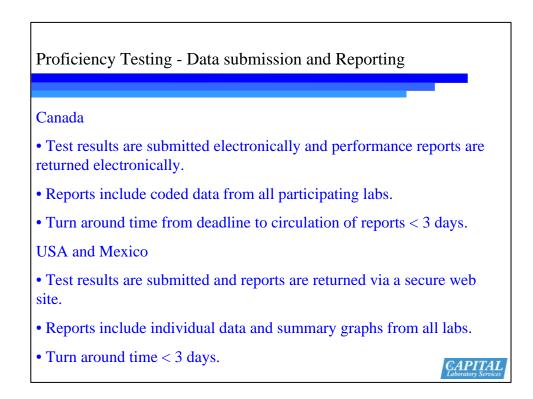

Paul Sauvé

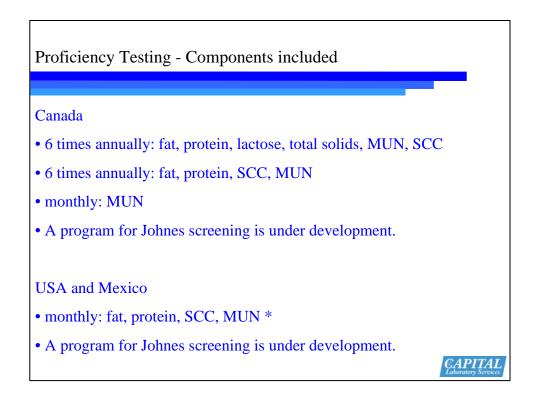

Canadian Lab Services, Ottawa, Canada

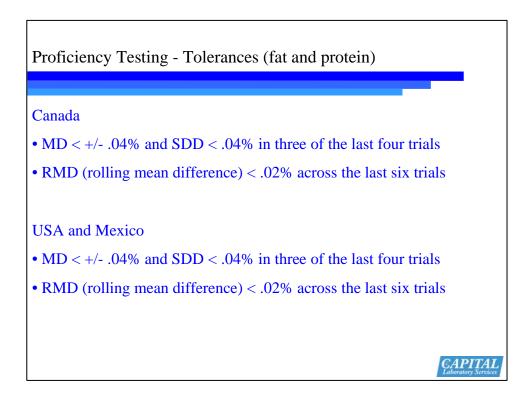
Abstract

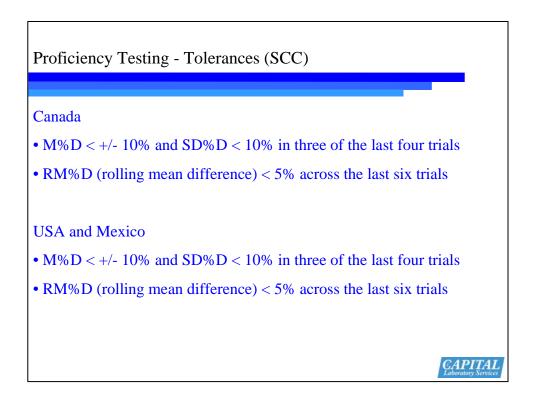

Statistics on milk recording laboratories of North America and analytical methods under control are presented so as to introduce and compare respective laboratory certification/accreditation systems and laboratory performance evaluation in Canada and US and Mexico. Respective systems are implemented and monitored by closely coordinated organisations, Canadian Laboratory Services for Canada and Quality Certification Services for United States and Mexico. The principles and organisations as well as proficiency testing schemes appear very close assuring consistency between North American countries.





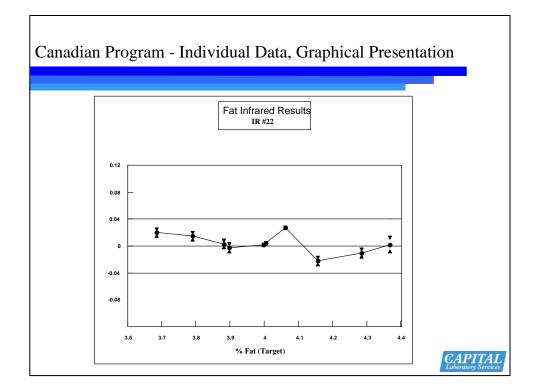




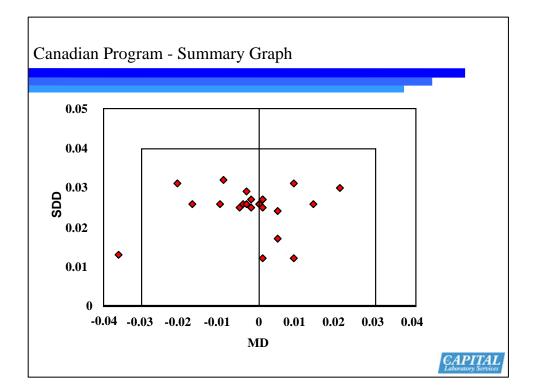


Profic	iency to	esting -	- Example	
<u>Sample</u>	<u>Fat (ref)</u>	<u>Fat (IR)</u>	<u>Diff.</u>	
1	3.685	3.715	0.030	
2	3.790	3.820	0.030	
3	3.882	3.910	0.028	
4	3.898	3.910	0.012	
5	3.998	4.035	0.037	
6	4.006	4.040	0.034	
7	4.063	4.105	0.042	
8	4.157	4.170	0.013	
9	4.286	4.300	0.014	
<u>10</u>	<u>4.368</u>	<u>4.395</u>	<u>0.027</u>	
		MD	0.027	
		SDD	.0010	
			CA	PIT. atory Set

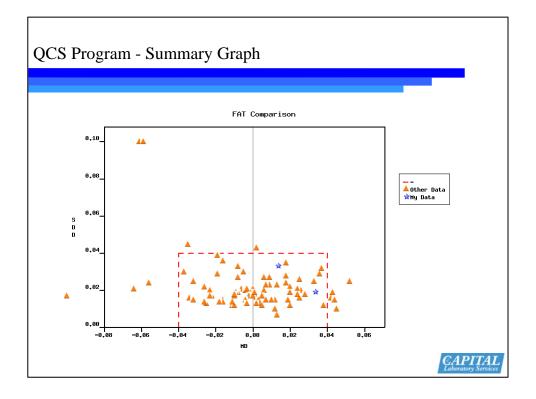
Profic	iency to	esting -	- Example	
<u>Sample</u>	<u>Fat (ref)</u>	<u>Fat (IR)</u>	Diff.	
1	3.685	3.715	0.030	
2	3.790	3.820	0.030	
3	3.882	3.910	0.028	
4	3.898	3.910	0.012	7
5	3.998	4.035	0.037 $MD < +/04\%$ in three	
6	4.006	4.040	0.034	
7	4.063	4.105	0.042	
8	4.157	4.170	0.013	
9	4.286	4.300	0.014	
<u>10</u>	<u>4.368</u>	<u>4.395</u>	0.027	
		MD (0.027	
		SDD	.0010	
				CAPITA Laboratory Service


Assessment of lab performance and analytical equivalence in milk tetsing in North America

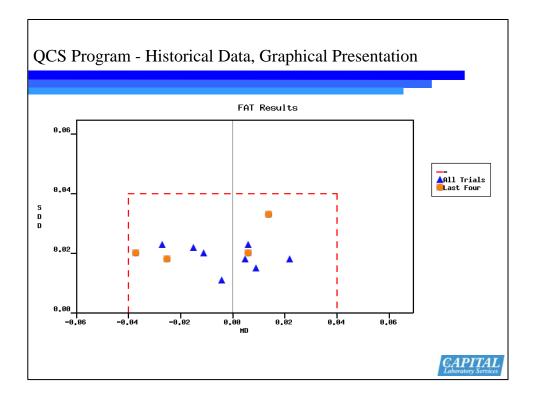
Proficiency Testing - Example	
• The rolling mean difference (RM) across the last six trials.	D) must be less than .02 percent
Date	MD
Jan 2008	-0.020
Feb 2008	0.015
Mar 2008	0.022
Apr 2008	-0.031
May 2008	0.024
<u>Jun 2008</u>	0.011
RMD	0.004 CAPITAL

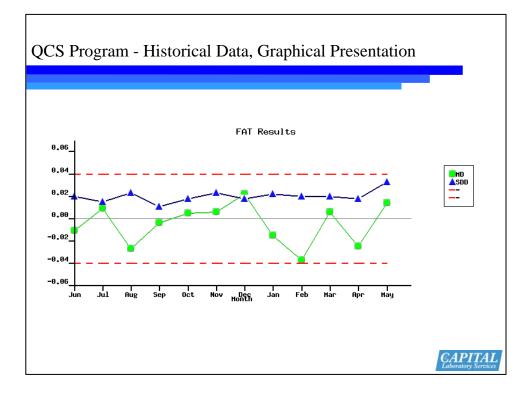

Γ

ot Infra	arad Bas	ulto		ID #22		May 20	no	
Fat Infrared ResultsIR #22May 2008								
SAMPLE	TARGET	REP. 1	REP. 2	MEAN	RANGE	SD	RES.	
MS -2	3.685	3.710	3.700	3.705	0.010	0.007	0.020	
MS -8	3.790	3.810	3.800	3.805	0.010	0.007	0.015	
MS -6	3.882	3.880	3.890	3.885	0.010	0.007	0.003	
MS -9	3.898	3.890	3.900	3.895	0.010	0.007	-0.003	
MS -7	3.998	4.000	4.000	4.000	0.000	0.000	0.002	
MS-10	4.006	4.010	4.010	4.010	0.000	0.000	0.004	
MS -4	4.063	4.090	4.090	4.090	0.000	0.000	0.027	
MS -5	4.157	4.130	4.140	4.135	0.010	0.007	-0.022	
MS-3	4.286	4.270	4.280	4.275	0.010	0.007	-0.010	
MS-1	4.368	4.380	4.360	4.370	0.020	0.014	0.002	
						MD	0.004	
	1		1	I	1	SDD	0.014	
						SDA	0.007	


Г

Canadian Program - Su	iiiiiiai	y raok			
	Protein In	frared Res	ults		
IR#	MD	SDD	SDA	s	
IR#2	-0.036	0.013	0.009	0.023	
IR#14	-0.021	0.031	0.006	0.022	
IR#6	-0.017	0.026	0.009	0.019	
IR#13	-0.010	0.026	0.005	0.016	
IP#19	-0.009	0.032	0.015	0.021	
IR#10	-0.005	0.025	0.006	0.015	
IR#3	-0.004	0.026	0.009	0.016	
IB#17	-0.003	0.029	0.003	0.017	
IR#8	-0.003	0.026	0.006	0.016	
IR#11	-0.002	0.027	0.007	0.016	
IR#22	-0.002	0.025	0.007	0.015	
IR#12	0.000	0.026	0.007	0.016	
IR#18	0.001	0.027	0.004	0.016	
IR#4	0.001	0.027	0.005	0.016	
IR#5	0.001	0.025	0.004	0.015	
IR#1	0.001	0.012	0.005	0.008	
IR#15	0.005	0.024	0.008	0.015	
IR#20	0.005	0.017	0.005	0.011	
IR#7	0.009	0.031	0.003	0.019	
IR#21	0.009	0.012	0.002	0.009	
IR#16	0.014	0.026	0.007	0.018	
IR#9	0.021	0.030	0.007	0.022	


Г


500 A itterfat									
mple	Lab/Ins	trument	Avg	Instr R	esults	Prec	Stats	Accuracy	Stats
mber	Ref	Inst	Diff	Rep1	Rep2	Range S	D Reps	IR Mean	Diff
1	3.557	3.564	0.007	3.56	3.58	0.020	0.014	3.570	0.013
2	3.907	3.909	0.002	3.91	3.90	0.010	0.007	3.905	-0.002
3	2.990	2.990	0.000	3.01	3.03	0.020	0.014	3.020	0.030
4	4.153	4.138	-0.015	4.20	4.20	0.000	0.000	4.200	0.047
5	3.547	3.550	0.003	3.57	3.59	0.020	0.014	3.580	0.033
6	3.797	3.782	-0.015	3.78	3.79	0.010	0.007	3.785	-0.012
7	3.707	3.723	0.016	3.74	3.77	0.030	0.021	3.755	0.048
8	3.223	3.224	0.001	3.26	3.26	0.000	0.000	3.260	0.037
9	3.640	3.649	0.009	3.68	3.67	0.010	0.007	3.675	0.035
10	4.297	4.289	-0.008	4.28	4.27	0.010	0.007	4.275	-0.022
11	4.817	4.800	-0.017	4.75	4.76	0.010	0.007	4.755	-0.062
12	4.370	4.382	0.012	4.40	4.39	0.010	0.007	4.395	0.025
		MD	0.000			SDA	0.006	MD	0.014
		SDD	0.011					SDD	0.033

٦

QCS Program - Historical Data, Tabular Presentation									
Month	FAT MD	Result SDD	rs RMD						
Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May	-0.027 -0.004 0.005 0.006 0.022 -0.015 -0.037 0.006 -0.025	0.015 0.023 0.011 0.018 0.023 0.018 0.022 0.020 0.020	0.008 0.004 0.002 -0.002 -0.004 0.002 -0.002 -0.004 -0.002 -0.002	Changed	cell	here!			
-							CAPITAL Laboratory Services		

Discussion and conclusion

Discussion was focused on the centralised calibration issue.

Matrix effect with mid infrared analysis in relation with milk composition as depending on feeding practices and available forages in the collect area was found relative. Centralised calibration made for large areas (region, countries) and marked geographical differences are likely to show more variation in animal foodstuff and quality.

Centralised calibration for a large area suits better with only little local effect otherwise, if applyed with no correction of region biases, the level of uncertainty is larger but can accepted for milk recording testing results at a certain degree provided it is prior evaluated.

A question was on how far multivariate calibration applyied to the whole MIR spectrum absorbances with using milk samples of various region could overcome the regional effects. There is no recent information on that nevertheless, it was agreed on that if new instruments have drastically improved accuracy through optimised fittings and reducing marginal interferences, main fundaments of MIR analysis for major components of milk keeps the same with still matrix effects sensitivity. Also such new devices are not generalised and many classical filter instruments are still used and this for a while before complete replacement. Moreover newly appearing feeding stuff with special nutrient to favour unsaturated fatty acid in milk fat can produce even more discrepancy within and beween collect areas.

To the question on the efficiency of sample sets, it is explained multivariate calibration using natural milk samples normally serve to calculate internal coefficients made to reduce accuracy standard deviation but they are not so adequate as recombined (or modified) milk samples to adjust accurately the calibration line as the speakers' presentations showed.

The point of the difficulty in identifying proper representative samples for calibration was raised. Answer was that a commingling of bulk milk of the area was appropriate provided physicochemical quality is assured before the testing operation.

Chairman concluded by considering with satisfaction the presentations of the second part of the meeting had shown a large consensus on the technical tools and methods presented in the first part with a number of them already adopted and used from years. This fact justifies to produce guidelines to stick on the paper optimum procedures.

Conclusion of the meeting

The meeting was the occasion to make a review of of the today situation of ICAR Reference Laboratory Network so as it can be better known in North America and favour collaboration with North American laboratory networks. The goal seemed reached and commitment taken to kave further meetings with NALMA.

It was also the occasion to explain the principle of the international traceability of reference results and the anchorage of routine laboratories via national reference laboratories based on the concrete reality of proficiency studies. Thanks to the information it is expected more numerous ICAR countries to nominate reference laboratories and involve them in ICAR international proficiency studies. Reference system and centralised calibration have been presented as practical, easy and economic tools for a national laboratory network, and also promising in the field of forthcoming on-farm analysis.

Presentations will serve to define appropriate ICAR guidances on proficiency study organisation and centralised calibration.

The Chairman thanked the speakers and the attendance for their large participation and invited every attending person to take part in the joint meeting of NALMA / ICAR Reference Laboratory Network in the afternoon.