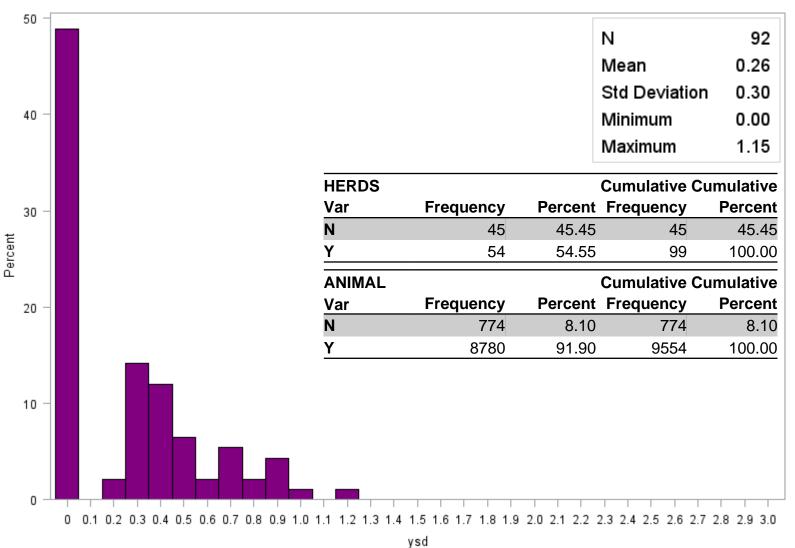
Calving ease Estimation of cross-country genetic parameters for Limousin cattle

Research report prepared by the Czech Research Team

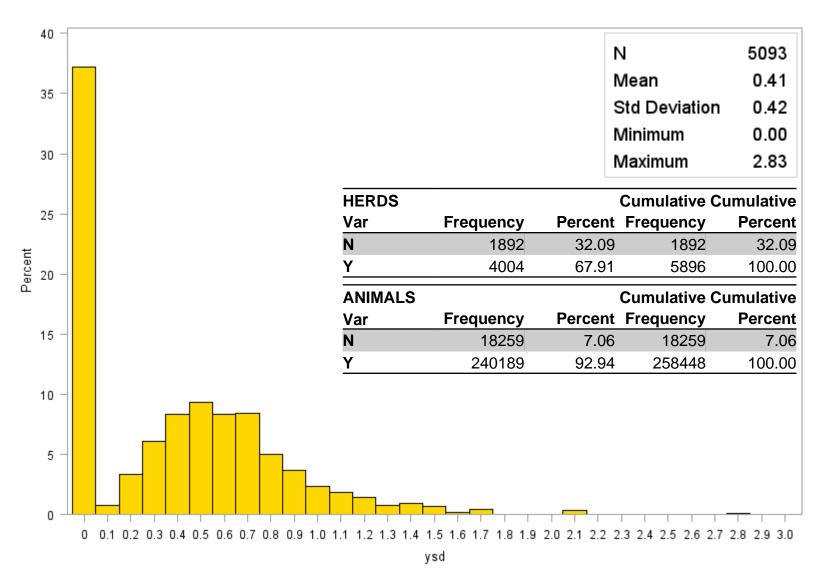


Data

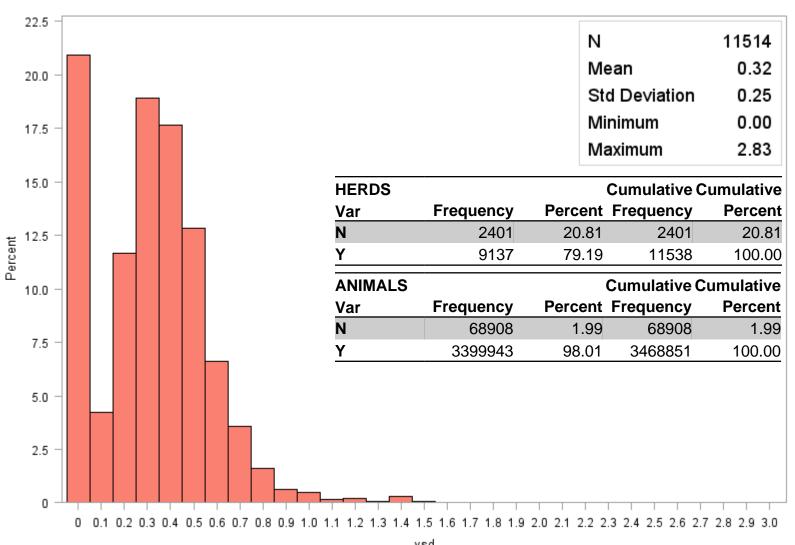
Туре	Country of origin	N	
Pedigree	All countries	4,523,586	
Performance	FRA	3,468,854	85.5%
	DNK	258,448	6.4%
	IRL	170,856	4.2%
	GBR	121,407	3.0%
	SWE	26,369	0.6%
	CZE	9,554	0.2%
	All	4,055,485	

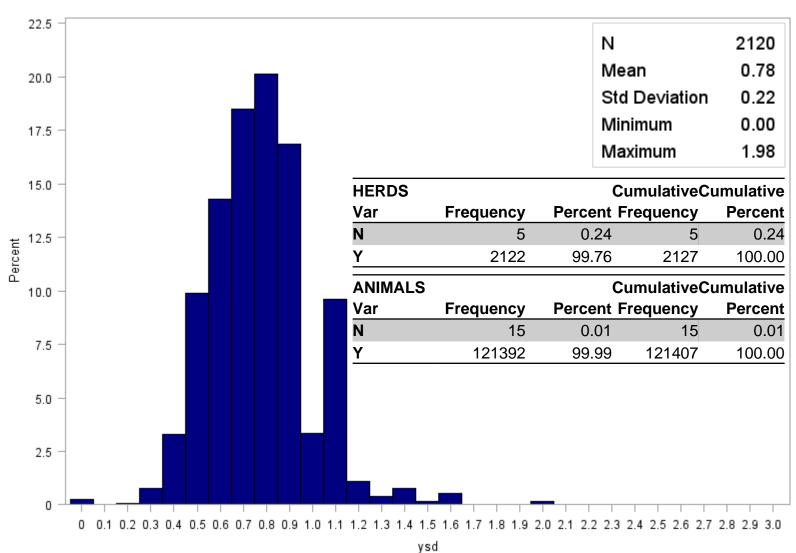

Data edits

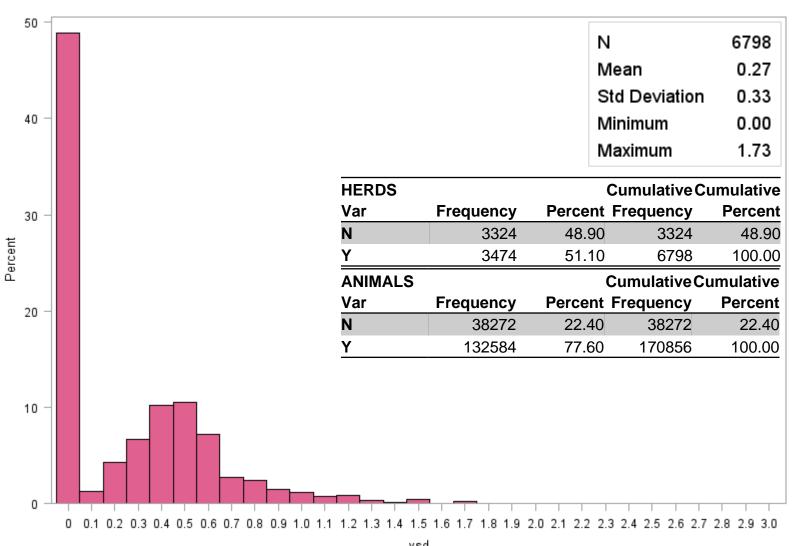
- Pedigree of calves without official registration number (dead calves)
 - "UUUUUUUUUUUUUUUUU"
 - CZE 4.53%
 - DNK 3.82%
 - FRA 0%
 - GBR 0%
 - IRL 0%
 - SWE 2.98%

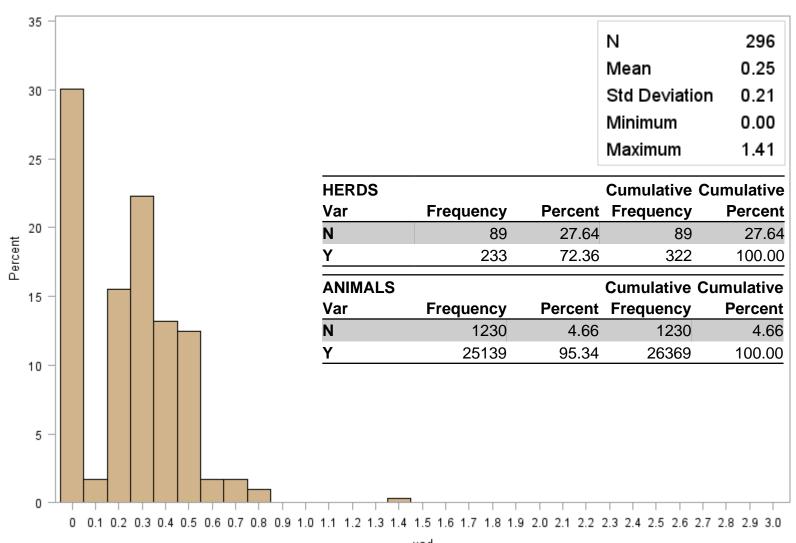

Data edits

Countries	1. Herds without	2. ET	3. No sire	4. CG (min	Remaining
	variation		or/and MGS	CG size 5)	animals
FRA	68,908	0	947,524	93,754	2,358,665
DNK	18,259	22	100,824	17,402	121,938
IRL	38,272	2,051	27,867	25,292	77,374
GBR	15	3,376	2,307	7,891	107,818
SWE	1230	0	3,467	1,161	20,511
CZE	774	552	387	622	7,219


DISTRIBUTION OF SD OF CALVING EASE SCORE IN HERDS - CZE


DISTRIBUTION OF SD OF CALVING EASE SCORE IN HERDS - DNK


DISTRIBUTION OF SD OF CALVING EASE SCORE IN HERDS - FRA


DISTRIBUTION OF SD OF CALVING EASE SCORE IN HERDS - GBR

DISTRIBUTION OF SD OF CALVING EASE SCORE IN HERDS - IRL

DISTRIBUTION OF SD OF CALVING EASE SCORE IN HERDS - SWE

Building files for REML

- Method and software from ICBF
 - Connection within 3 generations

- 7 subsets for FRA according to random selection of herds
 - Followed by the weighted mean
 - Weights SE

$$\mu^* = \frac{1}{SW} \sum_{i=1}^{7} \frac{\mu_i}{SE_i^2} \qquad SW = \sum_{i=1}^{7} \frac{1}{SE_i^2}$$

Models

CZE	DNK	FRA	GBR	IRL	SWE
CG*	CG	CG	CG	CG	CG
	season	season			
birth year					
			birth month		
sex × twi	sex			sex	sex
	twi				
		parity × age	parity × sex	parity	parity
age	age			age**	age
			birth type		
			purebred status		

^{*} random effect

^{**} fixed regression

Models

- 2 x 2 analysis
- Linear model

- 1. AM with direct genetic effect and MPE
 - residual correlation = 0
 - Software: airemlf90
- 2. AM with direct and maternal genetic effect and MPE
 - residual correlation = 0
 - direct maternal correlation = 0
 - Software: gibbs1f90

Results – 1. AM-DE-MPE

	CZE	DNK	FRA	GBR	IRL	SWE
CZE						
DNK	0.95 (0.027)					
FRA	0.53 (0.129)	0.89 (0.019)				
GBR	0.95 (0.017)	0.68 (0.042)	0.59 (0.044)			
IRL	0.19 (0.250)	0.60 (0.089)	0.98 (0.004)	0.79 (0.032)		
SWE	nc	0.47 (0.102)	0.66 (0.080)	0.48 (0.007)	nc	

Average direct genetic correlation = 0.71

Results – 2. AM-DE-ME-MPE

Direct (below diagonal) and maternal effect (above diagonal)

	CZE	DNK	FRA	GBR	IRL	SWE
CZE		nc	0.20 (0.13)	nc	nc	nc
DNK	nc		0.63 (0.073)	nc	nc	0.39 (0.107)
FRA	0.62 (0.079)	0.92 (0.015)		0.63 (0.081)	0.55 (0.093)	0.56 (0.104)
GBR	nc	nc	0.77 (0.031)		0.47 (0.106)	nc
IRL	nc	nc	0.88 (0.021)	0.68 (0.048)		nc
SWE	nc	0.42 (0.109)	0.64 (0.081)	nc	nc	

Average direct genetic correlation = 0.70; Average maternal genetic correlation = 0.53

Results – 2. AM-DE-ME-MPE

Weighted means from 2 x 2 analysis from AM-DE-ME-MPE

		CZE	DNK	FRA	GBR	IRL	SWE
	Variance DIR	0.0029	0.0175	0.0052	0.0223	0.0090	0.0019
	Variance MAT	0.0041	0.0119	0.0024	0.0062	0.0023	0.0010
	Variance MPE	0.0043	0.0558	0.0081	0.0072	0.0118	0.0019
ITBF	Variance RES	0.0800	0.1751	0.0774	0.1687	0.1370	0.0154
Ē	Variance HYS	0.0092					
	h ² DIR	3%	7%	6%	11%	6%	10%
	h ² MAT	4%	5%	3%	3%	1%	5%
	c ² MPE	4%	22%	9%	4%	7%	10%
NAT	h ² DIR*	9%	10%	5%	12%	9%	16%
	h ² MAT**	4%	10%	4%	8%	2%	12%
_	c ² MPE**	3%	2%	2%	5%	?	?

^{*} From 603 files

^{**} From "Description of National Genetic Evaluation Systems for beef cattle as applied in different Interbeef member countries"

Results – 3. Full matrix

1. CORRELATION MATRIX DIRECT EFFECT

- All correlations non-converged and correlations < 0.2 from 2. AM-DE-ME-MPE were set to their value from AM-DE-MPE.
- All correlations non-converged from both models and correlations < 0.2 were set to 0.71 with SD 0.25 (largest SD).
- Bending SD of estimated correlations were used for weighting.

2. CORRELATION MATRIX FOR MATERNAL EFFECT

- All correlations non-converged and correlations < 0.25 were set to 0.53 with SD 0.13.
- Bending SD of estimated correlations were used for weighting.

3. FULL CORRELATION MATRIX

- Correlations between direct and maternal genetic effect from national genetic evaluation in participant countries
- Banding Numbers of bulls and common bulls used for weighting.

Results – 4. Full banded matrix

				DIR	ECT			MATERNAL					
		CZE	DNK	FRA	GBR	IRL	SWE	CZE	DNK	FRA	GBR	IRL	SWE
	CZE												
ь	DNK	0.76											
S	FRA	0.52	0.78										
DIRECT	GBR	0.84	0.67	0.71									
	IRL	0.62	0.64	0.90	0.80								
	SWE	0.58	0.45	0.62	0.55	0.83							
	CZE	-0.18	0.00	-0.03	-0.01	0.01	0.00						
¥	DNK	-0.04	-0.20	-0.16	0.05	0.02	0.05	0.53					
S	FRA	0.08	-0.26	-0.56	-0.10	-0.30	-0.06	0.53	0.63				
MATERN	GBR	-0.02	0.04	-0.10	-0.05	0.01	0.03	0.53	0.53	0.63			
	IRL	0.01	0.05	-0.19	-0.04	-0.22	-0.06	0.53	0.53	0.55	0.46		
	SWE	-0.02	0.04	-0.08	0.04	-0.03	-0.11	0.52	0.39	0.55	0.52	0.52	

Average direct genetic correlation = 0.68; Average maternal genetic correlation = 0.53