

Across-country correlations Interbeef WG - May2014

ICBF genetic team / InterBeef

Background: presentation of r_g

- Oct 2013 TC Prague : across-country r_q
 - 6 countries for CHA
 - 8 countries for LIM
- Mar 2014 TC Uppsala: across-country r_q
 - 8 countries for CHA
 - 10 countries for LIM
- May 2014 TC Berlin: across-country r_q
 - 8 countries for CHA corrected for DEU
 - 10 countries for LIM corrected for DEU

Data edits: LIM

Table 1. Summary of Interbeef data and basic edits.

			UNK.		N SIRE/CG	
	N	E.T.	PARENT	C.G. < 3	< 2	EDITED DATA
Pedigree	2,978,596					2,978,596
FRA	2,322,277		439,923	28,080	342,682	1,511,592
GBR	123,974	6,261	2,683	233	29,461	85,336
IRL	16,189	669	1,891	382	2,773	10,474
DNK	42,165	428	1,929	2,507	6,017	31,284
ESP	33,259		2,482	71	5,229	25,477
SWE	21,124		1,465	687	3,554	15,418
FIN	13,036	72	1,436	237	1,067	10,224
CZE	7,531	559	210	256	582	5,924
DEU	67,710		3,674	2,245	11,115	50,676
CHE	24,978		4,333	455	3,150	17,040
NOR*						56,926

^{*}NOR = SWE + FIN + DNK

Data edits: CHA

Table 1. Summary of Interbeef data and basic edits.

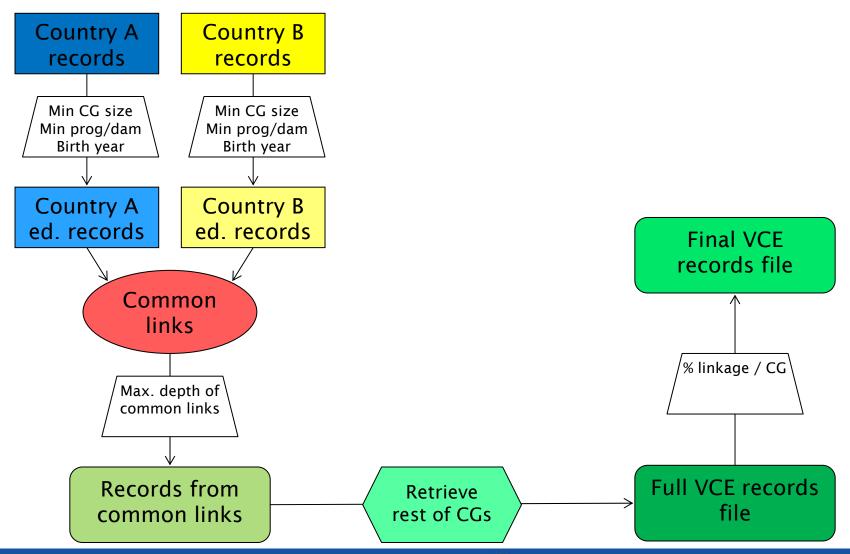
			UNK.		N SIRE/CG	
	N	E.T.	PARENT	C.G. < 3	< 2	EDITED DATA
Pedigree	4,965,053					4,965,053
FRA	3,945,951		652144	35916	328805	2,929,086
IRL	18,791	479	2706	428	2535	12,643
DNK	15,881	520	650	1032	1877	11,802
SWE	114,501		4114	3727	17120	89,540
FIN	17,185	142	2586	345	1469	12,643
CZE	28,261	1466	1678	755	2337	22,025
DEU	75,522		4586	3063	12101	55,772
CHE	8,292		1212	98	557	6,425
NOR*						113,985

^{*}NOR = SWE + FIN + DNK

Method

- Create VCE files with max. connection
 - ~ max 100,000 animals with records
 - 5 generations of pedigree
- Series of 2 x 2 country analysis
 - Using 603 defined models
 - Using S/MGS model in DMU

Table 3. Structure of covariance matrix in correlation models.


		col	untry1	country2				
		dir1	mat1	dir2	mat2			
country1	dir1	VARdir1						
	mat1	-0.20 (F)*	VARmat1					
country2	dir2	COV(dir1,dir2)	0 (F)**	VARdir2				
	mat2	0 (F)**	COV(mat1,mat2)	-0.20 (F)*	VARmat2			

^{*}Correlation fixed to approx. -0.20 (-0.10 to -0.30) except for CHE (0).

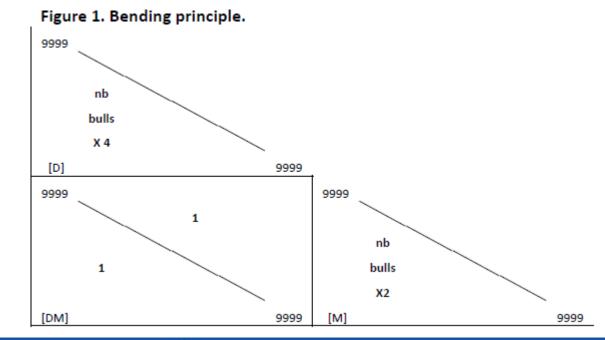
^{**}Correlation fixed to 0.

Building perf. files

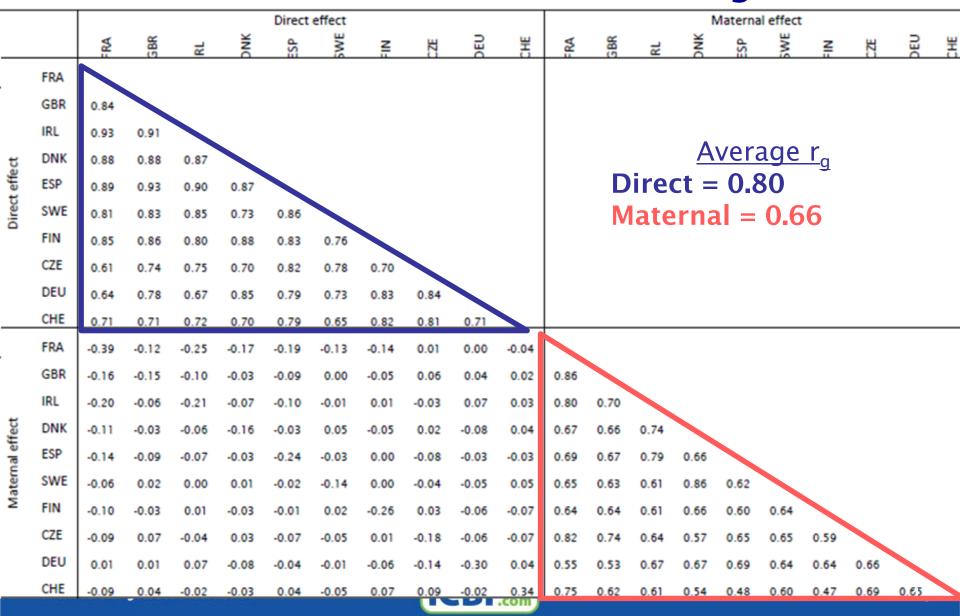
LIM raw r_g

	Maternal effect													
		FRA	GBR	IRL	DNK	ESP	SWE	FIN	CZE	DEU	CHE			
	FRA		0.87	0.82	0.70				0.85	0.56	0.76			
	GBR	0.84		0.71		0.70			0.80	0.55				
	IRL	0.96	0.93		0.79	0.83								
rect	DNK	0.91		0.93			0.91		0.62		0.60			
C	ESP		0.96							0.71	0.50			
e	SWE				0.73			0.70			0.68			
fe	FIN						0.79							
effect	CZE	0.59	0.71		0.71						0.74			
	DEU	0.65	0.80			0.79	0.77				0.67			
	CHE	0.72			0.73	0.80	0.66		0.89	0.71				

CHA raw r_g


	Maternal effect														
	FRA	IRL	DNK	SWE	FIN	CZE	DEU	CHE							
FRA		0.70		0.67			0.60								
IRL	0.77														
DNK				0.70	0.64										
DNK SWE	0.90		0.59		0.87	0.81	0.50	0.70							
FIN			0.90	0.68		0.93									
FIN CZE				0.79	0.83		0.78								
DEU	0.78			0.78		0.78									
CHE				0.70											

Bending procedure


· Jorjani et al. (2003) weighted bending procedure was used

r_g were weighted by number of common

bulls

LIM post-bending r_g

CHA post-bending r_g

					Direct	effect					Materna	leffect					
		⋖	_	NK ONK	WE.		ш	⊇	ш	<		ONK	WE.		ш	₽	ш
		-RA	R	5		Z	ZZE	DEU	품	-RA	교	- 5		Z	ZZE	DEU	품
	FRA																
	IRL	0.78															
t	DNK	0.87	0.86									<u> </u>	\ver	<u>age</u>	<u>r</u> g		
t effe	SWE	0.83	0.79	0.61							Dir	ect :	= 0.7	78			
Direct effect	FIN	0.84	0.73	0.85	0.67						Ma	tern	al =	0.6	6		
0	CZE	0.88	0.83	0.85	0.76	0.82											
	DEU	0.78	0.89	0.88	0.74	0.85	0.76										
	CHE	0.76	0.77	0.81	0.67	0.66	0.53	0.86									
	FRA	-0.40	-0.04	-0.16	-0.20	-0.15	-0.22	-0.07	-0.13								
	IRL	-0.07	-0.21	-0.05	-0.06	0.05	-0.07	-0.07	-0.04	0.68							
ect	DNK	-0.09	-0.03	-0.16	0.09	0.00	-0.05	-0.06	-0.05	0.68	0.66						
Maternal effect	SWE	-0.08	-0.04	0.04	-0.14	-0.01	0.00	0.02	0.01	0.63	0.61	0.66					
tem	FIN	-0.09	0.05	-0.01	0.00	-0.20	-0.04	-0.07	0.04	0.65	0.55	0.58	0.84				
Ž	CZE	-0.09	-0.03	-0.04	-0.02	-0.05	-0.18	-0.07	0.11	0.69	0.65	0.66	0.75	0.86			
	DEU	-0.06	-0.10	-0.09	-0.04	-0.11	-0.06	-0.30	-0.15	0.59	0.67	0.67	0.47	0.65	0.76		
	CHE	-0.04	0.01	0.03	0.01	0.00	0.00	0.00	0.07	0.70	0.74	0.64	0.62	0.61	0.61	0.67	

Summary

- Better convergence in LIM compared to CHA
- · Average $r_{g(direct)} \sim 0.79 r_{g(maternal)} \sim 0.66$
- Co-variance matrix was computed using national estimates
 - of variances (genetic & residual)
 - of within- country COV_(dir,mat)
 - of perm. env. of dam variances
 - of other variances (e.g., CG)

