

General aspects of measuring animal health and welfare using sensor technology

Stygar¹ A., Frondelius¹ L., Berteselli³ G.V., Gómez² Y., Canali³ E., Krampe⁴ C, Niemi¹ J., Llonch² P., Pastell¹ M.

- ¹ Natural Resources Institute Finland (Luke),
 - ² Universitat Autònoma de Barcelona,
 - ³ Università degli Studi di Milano,
 - ⁴ Wageningen University and Research

Milk, but which one?

How are consumers informed about animal welfare?

consumers

farmers

https://www.clearfarm.eu/

Is it possible to classify dairy cattle according to their welfare status using sensor data?

Data collection

Small pilots: February-June 2021

Herd size (enrolled to the pilots)

220 (50) 120 (50)

350 (50) 140 (50) 260 (50) 60 (50)

6 herds and 318 cows

Few examples:

Mastitis→ score 2 for 21 d

Locomotion → score 1 or 2 for 45 d

Heat Stress → score 1 for a given day

Sensors (27,500 rows of data):

- Accelerometers (walking, standing, lying, eating, ruminating, other behaviour)
- 2) Milk production data (kg)

Non-sensor data:

- 1) Days in milk
- 2) Lactation number

Modelling approach

- Model building XGBoost (eXtreme Gradient Boosted trees)
- Objective multi classification (multi:softprob), but can be also binomial or regression
- XGBoost Hyperparameters selection (e.g. Eta- learning rate, Max_dept – depth of the tree, Min_child_weight – control overfitting)
- Model input → around 30 variables (mean and sd of sensor data, slope and differences in time windows, days in milk and lactation number)
- Data weighing procedure combination on time from WQ assessment and frequency information

Global & herd specific models

Cross-validation strategies	Sensitivity	Specificity	AUC	Balance accuracy Yellow class	Balance accuracy Blue class
The global model	0.43 (±0.22)	0.68 (±0.12)	0.53 (±0.04)	0.52 (±0.10)	0.63 (±0.02)

Computation time in herd specific model was 2 minutes 28 seconds

Lesson learned –implications from the proof-of-concept

- 1) Model robustness- a combination of in-person and algorithm-based welfare evaluation is needed to
- 2) Welfare definition- still challenging
- 3) Missing predictors farms with varying degrees of digitalization
- 4) Stakeholder engagement to meet the needs of the end users

Thank you for your attention!

Follow us at www.clearfarm.eu

