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Introduction

Increases in milk production through management and genetics have substantially improved
feed efficiency and decreased costs per unit of product over recent decades. However, dairy
systems are also associated with environmental costs (Baskaran et al., 2009), with methane
(CH4) emissions associated with rumen microbial fermentation being both an important
contributor to global greenhouse gas (GHG) emissions, as well as an avoidable loss of energy
that could otherwise be directed into milk production. The livestock sector is responsible for
14.5% of the global GHG (Gerber et al., 2013); dairy cattle account for 18.9% of these
emissions, mainly in the form of enteric CH4 emissions (van Middelaar et al., 2014).

Methane is a greenhouse gas with a global warming potential 28 times that of CO2 (Myhre et
al., 2013). Methane from ruminant livestock is generated during microbial fermentation in
the rumen and hindgut (enteric CH4), and from decomposition of manure. Enteric CH4
contributes 80% of CH4 emissions by ruminants, and manure decomposition contributes
20%. Enteric CH4 accounts for 17% of global CH4 emissions and 3.3% of total global
greenhouse gas emissions from human activities (Knapp et al., 2014). There is, therefore, a
significant research interest to find ways to reduce enteric CH4 emissions by ruminants.

Ruminant animals have a digestive system to digest plant materials efficiently. Like most
mammals, ruminants lack the cellulase enzyme required to break the beta-glucose linkages in
cellulose, but they play host to diverse populations of rumen microbes that can digest
cellulose and other plant constituents. When rumen bacteria, protozoa and fungi ferment
carbohydrates and proteins of plant materials, they produce volatile fatty acids, principally
acetate, propionate and butyrate. High fibre diets favour acetate synthesis. Synthesis of
acetate and butyrate are accompanied by release of metabolic hydrogen, which, if allowed to
accumulate in rumen fluid, has negative effects on microbial growth, and feed digestibility
(Janssen, 2010). Rumen Archaea are microorganisms that combine metabolic hydrogen with
COz2 to produce CH4 and water. Archaea play a vital role, therefore, in protecting the rumen
from excess metabolic hydrogen, and the CH4 they produce is an inevitable product of rumen
fermentation.

A number of CH4 phenotypes have been defined (Hellwing et al., 2012); the most widely used
is CH4 production (MeP) in liters or grams per day.

The CH4 production trait is highly correlated with feed intake (Basarab et al., 2013; De Haas
et al., 2017) and, thereby, with the ultimate breeding goal trait: milk production in dairy
cattle. The economic value of daily dry matter intake and associated methane emissions in
dairy cattle showed that increasing the feed performance estimated breeding value by one
unit (i.e. 1 kg of more efficiently converted DMI during the cow’s first lactation) translates to
a total lifetime saving of 3.23 kg in DMI and 0.055 kg in methane (Richardson et al., 2019).
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Feed Performance was defined as a 1 kg increase in more efficiently used feed in a first parity
lactating cow. These results show not only the relation between DMI and CH4 production,
but also the economic relationship between these traits. Persistency of lactation was found to
be positively associated with increased feed efficiency and decreased methane production
and intensity. Feed efficiency was associated with lower methane intensity. Feed efficiency
and methane emissions can be improved by selecting for dairy cattle that are smaller and
have increased persistency of lactation. Efficiency and methane emissions can be further
improved by improved management of body condition score and by extending lactations
beyond the conventional 305-day length (Seymour, 2019). According to Ellis et al. (2007),
DMI predicted MeP with an R2 of 0.64, and ME intake (MJ/d) predicted MeP with an R2 of
0.53 for dairy cattle. AlternativePhenotype definitions include CH4 intensity (Mel), which is
defined as liters or grams of CH4 per kg of milk, and CH4 yield (MeY), which is defined as
liters or grams of CH4 per kg of dry matter intake (DMI) (Moate et al., 2016). Residual CH4
production (RMP) is calculated as observed minus predicted CH4 production (Herd et al.,
2014, Berry et al., 2015), with predicted values based on factors such as milk production,
body weight and feed intake. At the moment, it is not obvious which of these phenotypes to
use; but, it is important to monitor associations between the chosen CH4 phenotype and the
other important traits in the breeding goal (e.g. production, fertility, longevity) to avoid
unfavorable consequences. Berry and Crowley (2012) describe advantages and limitations of
ration traits. For example, because feed efficiency traits are a linear combination of other
traits it is not recommended to include them in an overall total merit index, which is a clear
limitation. For all applications it is necessary to measure the CH4 emission of each animal
individually. These guidelines are intended to make the right choices for this.

Whilst diet changes and feed additives can be effective mitigation strategies for CH4
emissions (Beauchemin et al., 2009; Martin et al., 2010; Hristov et al., 2013), their effects
depend on the continued use of a particular diet or additive and there have been issues with
the rumen microbiomes adapting to additives. Rumen bacterial communities are highly
dynamic after a diet switch and did not stabilize within 5 wk of cows grazing pasture
(Bainbridge et al., 2016). In contrast, breeding for reduced CH4 emissions should result in a
permanent and cumulative reduction of emissions (Wall et al., 2010). Several studies have
shown that CH4 emissions by ruminants have a genetic component, with heritability in the
range 0.20 — 0.30 (de Haas et al., 2011; Donoghue et al., 2013; Pinares-Patifio et al., 2013,
Kandel et al., 2014A, B; Lassen and Lovendahl, 2016; Lopez-Paredes et al. 2020). Breeding
for reduced CH4 emissions, alone or together with other mitigation strategies, could
therefore be effective in reducing the environmental impact of cattle farming and, possibly,
also in increasing feed efficiency. Such a breeding scheme would require, as a fundamental
starting point, accurate measures of individual CH4 emissions on a large scale.

Several techniques have been developed for the measurement of CH4 emissions from
ruminants, with varying degrees of accuracy (see reviews by Cassandro et al., 2013 and
Hammond et al., 2016A), but routine individual measurements on a large scale (a requisite
for genetic selection) have proven to be difficult to obtain and expensive to measure
(Pickering et al., 2015; Negussie et al., 2016). Therefore, identifying proxies (i.e. indicators or
indirect traits) that are correlated to CH4 emissions, but which are easy and relatively low-
cost to record on a large scale, would be a welcome alternative. Proxies might be less accurate
but could be measured repeatedly to reduce random noise and in much larger populations.

These guidelines are highly indebted to Garnsworthy et al. (2019). In this paper the methods
to measure CH4 are compared with special emphasis to the genetic evaluation of dairy cattle.
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Definitions and Terminology

Table 1 contains a list of important definitions for terms and abbreviations used in these

guidlelines.

Table 1. Definitions of Terms used in these guidelines.

Term Definition

ADF Acid detergent fibre

ADL Lignin

BCS Body condition score

CH, Methane

Ccv Coefficient of variation

DIM Days in milk

DMI Dry matter intake

DMPR Daily methane production rate

EE Ether extract

Enteric Methane from ruminant livestock generated during microbial fermentation

methane in the rumen and hindgut

EOBC Essential oils and their bioactive compounds

FTIR Fourier-transform infrared

GE gross energy intake

GHG Greenhouse gas

LMD laser methane detector

ME Metabolizable energy

Mel CH, intensity

MeP CH, production (liters or grams per day)

MeY CH, yield

MIR milk mid-infrared spectroscopy

NDF Neutral detergent fibre

NDIR Nondispersive Infrared

PAC Portable accumulation chambers

PAIR photoacoustic infrared

Proxy Not methane itself, but a substance enabling to measure methane levels
indirectly — easy, cheap, accurate, quantitative

PY protein yield

RMP Residual CH, production

RMPR Residual methane production rate

Methane - Page 6 of 48.
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Term Definition

RMSPE Root mean square prediction error
SF6 SF6 tracer gas technique

TMR Total mixed ration

VFA Volatile Fatty Acid

Ym Methane conversion rate

Appendix 1 to this guideline (here) contains information about the EDGP database including
examples of the data storage structure.

Scope

A variety of technologies are being developed and employed to measure CH4 emissions of
individual dairy cattle under various environmental conditions, as is evidenced by frequent
reviews (Storm et al., 2012; Cassandro et al., 2013; Hammond et al., 2016A; de Haas et al.,
2017). The first objective of the current guidelines is to review and compare the suitability of
methods for large-scale measurements of CH4 output of individual animals, which may be
combined with other databases for genetic evaluations. Comparisons include assessing the
accuracy, precision and correlation between methods. Combining datasets from different
countries and research centres could be a successful strategy for making genetic progress in
this difficult to measure trait if the methods are correlated (de Haas et al., 2017). Accuracy
and precision of methods are important. Data from different sources need to be appropriately
weighted or adjusted when combined, so any methods can be combined if they are suitably
correlated with the ‘true’ value. The second objective of the current guidelines, therefore, is to
examine correlations among results obtained by different methods, ultimately leading to an
estimate of confidence limits for selecting individual animals that are high or low emitters
(see also Garnsworthy et al., 2019).

Methane determining factors

Diet and rumen microbiota

Table 2 contains a list of dietary or microbiota factors that determine CH4 production.

Table 2. Methane determining factors related to diet and rumen microbiota.

Factors Reference

The main determinants of daily methane production are dry Beauchemin et al., 20009;
matter intake and diet composition: the more feed consumed, | Cottle et al., 2011; Knapp
and/or the greater the fibre content of the diet, the more et al., 2014; O’Neill et al.,

methane is produced per day. However, per unit of DMI, and 2011; Sauvant et al., 2011
per unit of fat+protein yield the grass diet produced less
enteric CH, per cow than the TMR diet. Nutritional
approaches for methane mitigation include reducing the forage
to concentrate ratio of diets, increasing dietary oil content, and
dietary inclusion of rumen modifiers and methane inhibitors.

@ Methane - Page 7 of 48.
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Factors

Reference

Methane output per kg of product is affected mainly by cow
milk yield or growth rate, and by herd-level factors, such as
fertility, disease incidence and replacement rate.

Garnsworthy, 2004

Methane output varies considerably between individual
animals. For animals fed the same feed, the between-animal
coefficient of variation (CV) in methane was 8.1%.

Blaxter and Clapperton,
1965

The amount of digestible nutrients consumed especially of the
carbohydrate fraction (starch, sugar, N-free residuals) is
reliable to estimate CH, release with high precision.
Furthermore, diets rich in fat reduced CH, formation in the
rumen.

Jentsch et al., 2007

DMI was also the most important determining factor, but there
were different regression lines for maize silage and dried grass
as the main roughage component: CH, (g)=93+16.8xDMI(kg)
and CH, (g)=81+14.0xDMI(kg), respectively. Methane release
was particularly dependent on the intake of crude fiber (CF)
and ether extract (EE): CH, (g)=63+80xCF (kg)+11xNFE
(kg)+19xCP(kg)-195xEE (kg).

Kirchgessner et al., 1991

Methane linearly increased with NDF intake (CH,
(L)=59.4xNDF[kg]+ 64.6) for cows together with their calves
independent of the breed.

Estermann et al., 2002

Enteric CH, could be predicted with the equation: CH,
(g/d)=84+47xcellulose(kg/d)+32xstarch(kg/d)+62xsugars
(kg/d).

Hindrichsen et al., 2005

The higher the percentage concentrate the lower Ym.

Zeitz et al., 2012

Additives can sometimes have a methane reducing effect:
higher dosages mitigate methane more. Saponins mitigate
methanogenesis by reducing the number of protozoa, whereas
condensed tannins act both by reducing the number of
protozoa and by a direct toxic effect on methanogens.

Beauchemin et al., 2008;
Jayanegara et al., 2012;
Zmora et al., 2012;
Cieslak et al., 2013;
Guyader et al., 2014

Plant essential oils have been shown as promising feed
additives to mitigate CH, and ammonia emission, but results
were inconsistent.

Cobellis et al., 2016;
Moate et al., 2011

Nitrate and sulphate addition decreased the enteric methane
emissions negatively affecting diet digestibility and milk
production. The effects of the salts are additive.

van Zijderveld et al.,
2010; van Zijderveld et
al., 2011

The methanogenesis in the rumen of calves is associated with
the development of the ruminal protozoa population. The
absence of protozoa in the rumen reduced both the CH,
production and the digestibility of carbohydrates.

Schonhusen et al., 2003

Implementing good grazing management reduced gross energy
intake loss as CH, by 14%.

Wims et al., 2010

@
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A low-moderate proportion of variation in CH4 emissions among ruminants is under genetic
control. Heritability coefficients of MeY and RMPR were h2=0.22 and 0.19 respectively in a
population of 1,043 Angus growing steers and heifers measured during 2 days in RC
(Donoghue et al., 2016). The heritability coefficient of MeY was h2=0.13 in a population of
1,225 dual-purpose growing sheep measured during 2 days in RC (Pinares-Patino et al.,
2013). Table 3 contains information of heritability of traits related to CH4 production.

Table 3. Heritability information of methane-related traits and measurements.

Factors

Reference

List with several h2

Pickering et al.,

Variation related to body weight, milk yield, parity, and week of
lactation/days in milk. The monitored variation might offer
opportunities for genetic selection.

2015
List with several h2 MPWG White
paper Dec 18
Methane emissions from individual cows during milking varied Garnsworthy et
between individuals with the same milk yield and fed the same diet. al., 2011A;
Between-cow variation in MERm is greater than within-cow variation | Garnsworthy et
and ranking of cows for CH, emissions is consistent across time. al., 2011B

Mechanistic modelling approach: potential for dietary intervention as
a means of substantially reducing CH, emissions without adverse
effects on dietary energy supply.

Mills et al., 2001

The CH,-to-CO, ratio measured using the non-invasive portable air

Lassen et al.,

sampler and analyzer unit based on Fourier transform infrared (FTIR) | 2012
detection method is an asset of the individual cow and may be useful

in both management and genetic evaluations.

The estimated heritability for CH, g/day and CH, g/kg of FPCM were | Kandel et al.,
lower than common production traits but would still be useful in 2013
breeding programs

Genetic correlation between CH, intensity and milk yield (MY) was - Kandel et al.,
0.67 and with milk protein yield (PY) was -0.46 in Holstein cows. 2014A, B

Milk production and CH, emissions of dairy cows seemed to be
influenced by the temperature humidity index.

Vanrobays et al.,
2013A

Estimate the heritability of the estimated methane emissions from 485
Polish Holstein-Friesian dairy cows at 2 commercial farms using FTIR
spectroscopy during milking in an automated milking system by
implementing the random regression method. The heritability level
fluctuated over the course of lactation, starting at 0.23 (SE 0.12) and
then increasing to its maximum value of 0.3 (SE 0.08) at 212 DIM and
ending at the level of 0.27 + 0.12. Average heritability was 0.27 + 0.09.

Pszczola et al.,
2017

CH, measured with a portable air-sampler FTIR detection method on
3,121 Holstein dairy cows from 20 herds using automatic milking
systems. The heritability of CH,_ MILK was 0.21 + 0.06. It was

Lassen and
Lovendahl, 2016

@
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Factors

Reference

concluded that a high genetic potential for milk production will also
mean a high genetic potential for CH4 production. The results
suggested that CH, emission is partly under genetic control, that it is
possible to decrease CH, emission from dairy cattle through selection,
and that selection for higher milk yield will lead to higher genetic
merit for CH4 emission/cow per day.

CH, production was measured of 184 Holstein-Friesian cows in. the
milking robot with a in total 2,456 observations for CH, production.
Heritability for CH, production ranged from 0.12 + 0.16 to 0.45 £ 0.11,
and genetic correlations with MY ranged from 0.49 + 0.121t0 0.54 +
0.26. The positive genetic correlation between CH, production and
milk yield indicates that care needs to be taken when genetically
selecting for lower CH4 production, to avoid a decrease in MY at the
animal level. However, this study shows that CH, production is
moderately heritable and therefore progress through genetic selection
is possible.

Breider et al.,
2019

CH4 concentration was measured with NDIR, and CH4 production
was estimated from CH4 concentration and body weight. Heritability
for CH4 concentration was 0.11 + 0.03 and for CH4 production 0.12 +
0.04. Positive genetic correlation was observed with MY (0.17-0.21),
PY (0.22-0.31) and FY (0.27-0.29). Other type traits showed positive
correlation with methane production (chest width=0.26, angularity
=0.19, stature =0.43 and capacity =0.31) possibly associated to higher
milk feed intake from these animals. Rumination time was negatively
correlated to CH4 production (-0.24) and CH4 concentration (-0.43).

However, larger CH4 production and CH4 concentration was
associated with shorter days open.

Lopez-Paredes et
al. (2020)

Genetic parameters of CH4 emissions predicted from milk fatty acid
profile (FA) and those of their predictors in 1,091 Brown Swiss cows
reared on 85 farms showed that enteric CH4 emissions of dairy cows
can be estimated on the basis of milk fatty acid profile. Additive
genetic variation of CH4 traits was shown which could be exploited in
breeding programmes.

Bittante and
Cecchinato, 2020

A total of 670 test day records were recorded on lactating Holstein
Friesian cows reared in 10 commercial dairy herds. Predicted methane
production (PMP) was estimated to be 15.33+1.52 MJ/d in dairy cows
with 23.53+6.81 kg/d of milk yeild (MY) and 3.57+0.68% of fat
content (FC). Heritability of MY was 0.09 with a posterior probability
for values of h2 greater than 0.10 of 44%. Estimates of heritability for
FC and protein content (PC) were 0.17 and 0.34, respectively, with a
posterior probability for values of h2 greater than 0.10 of 77% and
99%. For somatic cell score (SCS), heritability was 0.13 with a
posterior probability for values of h2 greater than 0.10 of 67%.
Heritability for the trait PMP was moderate to low (0.12); however,
posterior probability for values of h2 greater than 0.10 was 60%.
Medians of the posterior distributions of genetic correlations between

Cassandro et al.,
2010

@
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Factors Reference

PMP and milk production traits were: 0.92, 0.67, 0.14, and 0.14
between PMP and MY, PMP and FC, PMP and PC, and PMP and SCS,
respectively. Reduction of PMP seems to be viable through selection
strategies without affecting udder health and PC.

GWAS to study the genetic architecture of CH, production and Pszczola et al.,
detected genomic regions affecting CH, production. Detected regions | 2018
explained only a small proportion of the heritable variance. Potential
QTL regions affecting CH, production were located within QTLs
related to feed efficiency, milk-related traits, body size and health
status. Five candidate genes were found: CYP51A1 on BTA 4,
PPP1R16B on BTA 13, and NTHL1, TSC2, and PKD1 on BTA 25. These
candidate genes were involved in a number of metabolic processes
that are possibly related to CH4 production. One of the most
promising candidate genes (PKD1) was related to the development of
the digestive tract. The results indicate that CH, production is a highly
polygenic trait.

A 1000-cow study across European countries revealed that the Wallace et al.,
ruminant microbiomes can be controlled by the host animal. A 39- 2019
member subset of the core microbiome formed hubs in co-occurrence
networks linking microbiome structure to host genetics and phenotype
(CH, emissions, rumen and blood metabolites, and milk production
efficiency).

Methane measurements methods

Several factors influence the choice of measurement method such as cost, level of accuracy,
precision, scope of application, and scale, which vary across disciplines (Cassandro et al.,
2013; Hammond et al., 2016A; Garnsworthy et al., 2019). For instance, genetic selection
programs require CH4 measurements on thousands of related individuals under the
environmental conditions in which the animals are expected to perform (Falconer and
Mackay, 1996). This can be challenging because dairy cattle perform in a wide range of
conditions (e.g. grazing vs indoor housing).

There are a number of different measurement methods currently being employed, each with
advantages and disadvantages in terms of the factors listed above. The currently accepted
and widely used measurement methods are listed and described below.

The main features of methods for measuring CH4 output by individual animals are
summarised in Table 4. Values for each feature are based on experience of experts in
METHAGENE WG2 who have used the methods. All values are relative, and somewhat
subjective, because absolute values will depend on installation and implementation of each
method at different research centres. It should be noted that the measuring methods can be
divided in two major sections: methods that measure the concentration and flux of CH4 (e.g.
the respiration chamber), and methods that measure the flux of CH4 through the device (e.g.
GreenFeed). This affects the useability of the methods for answering research questions —
please see also the recommendations at the end of these guidelines.
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Respiration chambers

Respiration chambers are calibrated to be accurate and precise, and are the gold standard for
benchmarking new methods. Only respiration chambers measure total emissions from the
animal via the oral, nasal and anal routes; all other methods ignore emissions via the anus
and only measure CH4 emitted in breath. Breath measurements are justified because 99% of
CH4 is emitted from the mouth and nostrils, and only 1% via the anus (Murray et al., 1976).

A single animal (or occasionally more) is confined in a chamber for between 2 and 7 days.
Concentration of CH4 (and other gases if required) is measured at the air inlet and outlet
vents of the chamber. The difference between outlet and inlet concentrations is multiplied by
airflow to indicate CH4 emissions fluxes. In most installations, a single gas analyser is used
to measure both inlet and outlet concentrations, often for two or more chambers. This
involves switching the analyser between sampling points at set intervals, so concentrations
are actually measured for only a fraction of the day. If the sampling points acquisition
frequency is high it enables to draw the diurnal pattern of methane emission, comparable to
the GreenFeed system.

Respiration chambers vary in construction materials, size of chamber, gas analysis
equipment and airflow rate, all of which can influence results. Validation of 22 chambers at
six UK research sites revealed an uncertainty of 25.7% between facilities, which was reduced
to 2.1% when correction factors were applied to trace each facility to the international
standard CH4 (Gardiner et al., 2015). The main sources of uncertainty were stability and
measurement of airflow, which are crucial for measuring CH4 emission rate. The authors
concluded, however, that chambers were accurate for comparing animals measured at the
same site. This is an added challenge to benchmarking alternative methods with respiration
chambers if respiration chambers themselves have not been benchmarked with respiration
chambers at other facilities. It should be noted that substantial errors can occur if
appropriate calibration procedures are not followed (Gardiner et al., 2015).

For large-scale evaluation of CH4 emissions by individual animals, respiration chambers are
challenging with only a single study in growing Angus steers and heifers exceeding 1000
animals and finding CH4 production to be moderately heritable h2 = 0.27 + 0.07 (Donoghue
et al., 2016). Installation and running costs are high, as only one animal is normally
measured at once. If we assume that the monitoring time is three days per animal, and
chambers are run continuously, then maximum throughput would be approximately 100
animals per chamber per year. In practice, throughput is likely to be 30 to 50 animals per
year. Cows are social animals and confinement in a chamber may ultimately influence their
feeding behaviour resulting in less feed consumed and in a different meal pattern compared
with farm conditions. Altered feeding pattern or level is not a problem for metabolic studies
evaluating feeds but can be a problem when evaluating individual animals. Furthermore, the
representativeness of respiration chambers to grazing systems has been called into question
(Pinares-Patino et al., 2013). However, promising developments have led to more animal
friendly respiration chambers constructed from cheaper, transparent materials. These lower
the cost and reduce the stress of confinement with minimal disruptions to accuracy, precision
and no drop in feed intake of the cows (Hellwing et al., 2012).

Where an alternative method may be cheaper, less invasive, easier to implement, or have a
wider scope of application, it is of value to assess the relative accuracy, precision and
correlation with the gold standard to assess the relative worth of the alternative method
(Barnhart et al., 2007). All methods measure CH4 with some level of error, so the ‘true value’
of an individual is not known. However, when the level of measurement error increases, so
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too does the imprecision. When comparing two methods where one or both methods has high
imprecision a phenomenon known as ‘attenuation of errors’ occurs (Spearman, 1904). The
increased measurement error biases the correlation between the two methods downwards
and reduces the efficacy of detecting significant differences in accuracy (Adolph and Hardin,
2007). Or in terms of linear regression terms, when the observed CV of an alternative method
is higher than that of the gold standard method, the slope of regression between the methods
is decreased and the intercept is biased upwards.

Table 4. Summary of the main features of methods for measuring CH4 output by individual
animals?.

Method Purchase Running Labour: Repeatability Behav1.our Through
cost? costs? alterations -put

Respiration High High High High High Low

chamber

SFe technique ~ Medium High High Medium Medium Medium

Breath

sampling Low+ Low Low Medium None High

during milking

and feeding

GreenFeed Medium Medium Medium Medium Medium Medium

Laser methane Low Low High Low Low- Medium

detector Medium

Portable Accumulation Chambers

In Australia and New Zealand an alternative method was developed for the short-term
measurement of Methane Production Rate (MPR) of sheep using Portable Accumulation
Chambers (PAC) during 1 hour without leading discomfort to the animals. Similarly to RC,
CH4 emissions recorded in PAC include gases from flatulence in addition to eructed and
expired CH4, but only during 1 hour. For a detailed comparison of the PAC and respiration
chamber methods see Jonker et al. (2018).

1 Consensus views based on experiences of METHAGENE WG2 members
(www.methagene.eu).

2 Per measuring unit or group of animals.

3 Compared to no methane recording: low = measuring in situ; medium = some handling,
training or change in routine; high = confinement.

4 Medium if using FTIR analyser.
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SF6

The SF6 technique samples breath over 24 hours, whereas other techniques use spot samples
of breath over periods of minutes throughout the day, so diurnal variation has to be
considered. The majority of CH4 (87-99%) is released by eructation (Blaxter and Joyce, 1963;
Murray et al., 1976), which provides a clear signal for sample processing. Please note that the
tracheostomy used in Murray et al. (1976) may have resulted in a higher percentage, but in
both publications, it is clear that the majority of the CH4 is released via eructation.

The SF6 tracer gas technique was developed in an attempt to measure CH4 emissions by
animals without confinement in respiration chambers (Johnson et al., 1994). Air is sampled
near the animal’s nostrils through a tube attached to a halter and connected to an evacuated
canister worn around the animal’s neck or on its back. A capillary tube or orifice plate is used
to restrict airflow through the tube so that the canister is between 50 and 70% full in
approximately 24 hours. A permeation tube containing SF6 is placed into the rumen of each
animal. The pre-determined release rate of SF6 is multiplied by the ratio of CH4 to SF6
concentrations in the canister to calculate CH4 emission rate.

Many research centres have used the SF6 technique with variations in design of sampling
and collection equipment, permeation tubes, and gas analysis (Berndt et al., 2014). Reliable
results depend on following standard protocols, with greatest variation coming from accuracy
of determining SF6 release rate from permeation tubes and control of sampling rate. With
capillary tubes, sampling rate decreases as pressure in the canister increases, whereas an
orifice plate gives a steadier sampling rate over 24 hours (Deighton et al., 2014). A source of
error that has not been evaluated is that animals might interact and share CH4 emissions
when the sampling tube of one animal is near the head of another animal. There is good
agreement between CH4 emissions measured by the SF6 technique and respiration
chambers, although results from the SF6 technique are more variable (Grainger et al., 2007;
Munoz et al., 2012).

Breath sampling during milking and feeding

Several research groups have developed methods to measure CH4 concentration in breath of
cows during milking and/or feeding. These are often referred to as ‘sniffer methods’ because
they use devices originally designed to detect dangerous gas leaks. Air is sampled near the
animal’s nostrils through a tube fixed in a feed bin and connected directly to a gas analyser.
The feed bin might be in an automatic milking station (Garnsworthy et al., 2012A, B; Lassen
et al., 2012; Pszczola et al., 2017, 2018, 2019) or in a concentrate feeding station (Negussie et
al., 2017). Different research centres use different gas analysers (Nondispersive Infrared
(NDIR), Fourier-transform infrared (FTIR) or photoacoustic infrared (PAIR)) and different
sampling intervals (1, 5, 20 or 90-120 seconds). Methane concentration during a sampling
visit of typically between 3 and 10 minutes may be specified as the overall mean, or the mean
of eructation peaks. Some centres use CO2 as a tracer gas and calculate daily CH4 output
according to ratio of CH4 to CO2 and daily CO2 output predicted from performance of the
cow (Madsen et al., 2010). Repeatability and rank correlations were higher for eructation
peaks than for mean concentrations, and were higher for eructation peaks than for CH4 to
CO2 ratio (Bell et al., 2014). However, all methods show good repeatability.

GreenFeed

GreenFeed (C-Lock Inc., Rapid City, South Dakota, USA) is a sniffer system where breath
samples are provided when animals visit a bait station (Huhtanen et al., 2015). GreenFeed
Emission Monitoring (GEM) systems are designed for measuring animal emissions in their
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production environment. As with other sniffer systems, GreenFeed samples breath from
individual animals several times (in general 4 to 6 times) per day for short periods (3 to 7
minutes in which an under pressure is created to suck the whole breath of the animal to
measure the flux). They record CH4 and carbon dioxide (CO2) fluxes during short-term
periods of 3-10 minutes when cattle visit an automated feeder fitted with a semi-enclosed
head hood in which air is continuously drawn through an air-collection pipe (C-Lock, 2016;
Huhtanen et al., 2015; Hammond et al., 2016A; Velazco et al., 2016). Air samples are
continually (every second) analyzed for CH4 and CO2 concentrations using non-dispersive
infrared sensors. Gas fluxes are eventually calculated as the product of the air flow in the
collection pipe and the concentration of gases corrected for the background concentrations
and adjusted to standardized temperature, humidity and pressure. The position of the head
in the feeder is detected by an infrared sensor. Gas fluxes are not calculated if the head is not
correctly positioned in the feeder as not all the air in the feeder may be collected.

GreenFeed is a portable standalone system used in barn and pasture applications and
incorporates an extractor fan to ensure active airflow and head position sensing for
representative breath sampling (Hammond et al., 2016B). Measurements are pre-processed
by the manufacturer, and data are available in real-time through a web-based data
management system (Hammond et al., 2015). Because GreenFeed captures a high proportion
of emitted air and measures airflow, which can be calibrated using a tracer gas, CH4 emission
is estimated as a flux at each visit. Providing visits occur throughout the 24 hours, CH4
emission can be estimated directly as g/day (Hammond et al., 2015; Huhtanen et al., 2015).
More importantly, repeatability of CH4 measurement must be high so the duration of the
measurement period must be taken into account (Huhtanen et al., 2013; Arbre et al., 2016);
(R=0.7 after 17 days duration of measurement period, or R=0.93 after 45 days, Arbre et al.,
2016).

Laser methane detector

The laser CH4 detector (LMD) is a highly responsive, hand-held device that is pointed at an
animal’s nostrils and measures CH4 column density along the length of the laser beam
(ppm.m). In the first implementation of LMD on a farm, measurements for each cow were
taken over periods of 15 to 25 seconds between eructation events and could detect CH4
emitted each time the animal breathed out (Chagunda et al., 2009 Sorg et al., 2016, 2017). In
a later study with sheep and beef cattle, monitoring periods of 2 to 4 minutes allowed authors
to separate breathing cycles from eructation events (Ricci et al., 2014). Typically, animals are
restrained either manually or in head yokes at a feed fence for the required length of time.
The operator has to stand at the same distance (1 to 3 m) from each animal every time and
must be careful to keep the laser pointed at the animal’s nostrils throughout the
measurement period.

Discussion of methods

SF6 vs. respiration chamber

For large-scale evaluation of CH4 emissions by individual animals, the SF6 technique is more
useful than respiration chambers. Animal behaviour and intake might be affected by wearing
the apparatus, and by daily handling to exchange canisters, but the technique is considerably
less intrusive than respiration chambers because cows remain in the herd. Labour and
monetary costs for changing canisters each day and for lab analysis are high. Throughput is
limited by the number of sets of apparatus available, handling facilities, labour, and the
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capacity of the lab for gas analysis. Animals need to be measured for 5 to 7 days, and it is
recommended that group size should be less than 15 animals (Berndt et al., 2014), so
maximum throughput would be about 750 animals per year. The method may be better
suited for in housed conditions because of the labour and the potential movement restriction
of the animals due to wearing the apparatus.

Breath sampling during milking and feeding (— vs respiration chamber)

For large-scale evaluation of CH4 emissions by individual animals, breath-sampling methods
have significant advantages compared with other methods. Breath-sampling methods are
non-invasive because, once installed, animals are unaware of the equipment and are in their
normal environment. Animals follow their normal routine, which includes milking and
feeding, so no training of animals, handling, or change of diet is required. Equipment is
relatively cheap, although more expensive gas analysers are available, and running costs are
negligible.

The compromise for non-invasiveness of breath-sampling is that concentrations of gases in
the sampled air are influenced by cow head position relative to the sampling tube (Huhtanen
et al., 2015). The use of head position sensors and data filtering algorithms can remove the
effects when the cow’s head is completely out of the feed bin (Difford et al., 2016), but not
within the feed bin. Consequently, sniffer measurements are more variable than flux
methods, with factors like variable air flow in the barn increasing measurement error
(imprecision), and head position, a highly repeatable character, inflating between-cow
variability.

Using COz2 as a tracer gas partly addresses the issue but, because CO2 arises from
metabolism as well as rumen fermentation, variability of CO2 emissions has to be
considered. A further consideration is diurnal variation in breath concentrations of CH4 and
CO2 because animals are spot-sampled at different times of day and night. Diurnal variation
can be accounted for either by fitting a model derived from the whole group of animals, or by
including time of measurement in the statistical model (Lassen et al., 2012).

The number of observations per analyser is limited only by number of cows assigned to one
automatic milking station or concentrate feeding station and length of time equipment is
installed. Typically, each analyser will record 40 to 70 animals 2 to 77 times per day for 7 to 10
days, although the number of sampling stations per analyser can be increased by using an
automatic switching system (Pszczola et al., 2017). Throughput per analyser is likely to be
2,000 to 3,000 animals per year.

NDIR vs LMD

Both methods are low invasive. LMD needs larger labor force, wheras NDIR can be used
during milking and feeding. According to Rey at al. (2019), the repeatability of the CH4
concentration was greater for NDIR (0.42) than for LMD (0.23). Correlation between
methods was moderately high and positive for CH4 concentration (0.73 and 0.74,
respectively) and number of peaks (0.72 and 0.72, respectively), and the repeated measures
correlation and the individual-level correlation were high (0.98 and 0.94, respectively). A
high coefficient of individual agreement for the CH4 concentration (0.83) and the number of
peaks (0.77) were observed between methods. The study suggests that methane
concentration measurements obtained from NDIR and LMD cannot be used interchangeably.
But the use of both methods could be considered for genetic selection purposes or for
mitigation strategies only if sources of disagreement, which result in different between-
subject and within-subject variabilities, are identified and corrected for.
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GreenFeed

A limitation of the GreenFeed system is that animals require training to use the system,
although animals which have been trained to use the system will readily use it again (Velazco
et al., 2014). However, some animals will not use the system or will use it infrequently, and
frequency of visits is affected by diet (Hammond et al., 2016B). This can be a challenge when
screening commercial herds for CH4 emission under genetic evaluation. On the other hand,
animals seem to get used to the equipment rapidly, and the sound produced by the system is
remembered by the animals easily (personal information Dr. Finocchiaro). Alternatively, as
practised in Canada, the unit is moved to individual animals in a tie-stall setting multiple
times a day (personal information Prof C.F. Baes). Thus, action of individual animals is not
needed.

The manufacturer recommends 15 to 25 animals per GreenFeed unit, and recordings are
made typically for 7 days. If all animals visit the unit adequately, throughput per unit is likely
to be 750 to 1,250 animals per year. Sebek et al. (2019A, B) and Bannink et al. (2018) showed
the usefulness of the GreenFeed method in an on farm setting.

Laser methane detector

The LMD can be used in the animal’s normal environment, although for consistency restraint
is required during measurement. Because the LMD measures CH4 in the plume originating
from the animal’s nostrils, results can be affected by factors such as: distance from the
animal; pointing angle; animal’s head orientation and head movement; air movement and
temperature in the barn; adjacent animals; and operator variation (Sorg et al., 2017).
Operator variation is likely to be one of the biggest factors because the operator controls
distance and pointing angle, and is responsible for ensuring the laser remains on target. The
structure of the barn and the resulting ventilation conditions and wind speed at the location
of the measurement are also considerable sources of variation in recorded CH4.

Assuming operator fatigue does not limit measurements, each LMD could record up to 10
animals per hour. If each animal is recorded 3 times (on 3 consecutive days, for example, as
in Miihlbach et al. (2018)), throughput is likely to be up to 1000 animals per year.

Comparison of methods to measure methane

Correlations among methods

Table 5 shows correlations between the respiratory chamber method as the gold standard to
measure CH4 emission from cows and other methods. Data were taken from Garnsworthy et
al. (2019), Table 2.

Table 5. Correlations between Ch4 measuring methods. Data
were taken from Garnsworthy et al. (2019).

Method Correlation  (S.E.)

Respiratory chamber - SF6 0.87 -0.08
Respiratory chamber - GreenFeed 0.81 -0.1
Respiratory chamber — NDIR -0.07 0.88
Respiratory chamber — NDIR peak 0.72 -0.11
Respiratory chamber — PAIR -0.08 0.7
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Method Correlation  (S.E.)

SF6 - GreenFeed 0.4 -0.18
LMD - GreenFeed 0.77 -0.23
NDIR - GreenFeed 0.64 -0.18
NDIR - LMD 0.6 -0.11
FTIR - LMD 0.57 -0.25
NDIR - NDIR peaks 0.58 -0.15
FTIR - NDIR 0.97 -0.02
FTIR - NDIR 0.53 -0.17

In method comparison studies, simultaneous repeated measures per cow with two or more
methods are required in order to assess systematic differences between methods (means) and
random differences (precision) and correlation between methods free of residual error.
Furthermore, adequately short time differences between repeated measures per subject are
needed to ensure the underlying biology of the cow has not changed. Not all methods can be
recorded simultaneously and CH4 emission of cows’ changes both within day and over the
lactation period. In such instances either cross-over designs or matched pair repeated
measures designs are needed. Members of METHAGENE WG2 provided data from studies in
which two or more methods had been used to measure CH4 output (g/day) by individual
dairy cows. Methods were applied to each cow either concurrently or consecutively within a
short timeframe.

Seven main methods were represented: respiration chambers; SF6; GreenFeed; LMD; and
three breath-sampling systems based on different gas analysers. Gas analysers incorporated
different technologies to measure CH4, which were NDIR (e.g. Guardian Plus, Edinburgh
Instruments, Edinburgh, UK), FTIR (e.g. Gasmet 4030, Gasmet Technologies Oy, Helsinki,
Finland), or PAIR (e.g. F10, Gasera Ltd, Turku, Finland). In the contributing studies, NDIR
and FTIR were used in automatic milking stations, and PAIR was used in concentrate feeding
stations. One NDIR study and all FTIR and PAIR studies used CO2 as a tracer gas, with daily
CO2 output calculated either from milk yield, live weight and days pregnant or from
metabolisable energy intake. Two NDIR studies were based on CH4 concentration in
eructation peaks rather than mean CH4 concentration, so were treated as separate methods.
By separating NDIR studies, a total of 8 distinct methods were available giving a matrix of 28
potential combinations for comparisons. Data were available for 13 method combinations
(Garnsworthy et al., 2019).

Method comparisons were conducted using bivariate models (repeatability animal models) to
obtain correlations between ‘true values’, also known as repeated measures correlations or
individual level correlations (Bakdash and Marusich, 2017). Variance components including
between cow variation and within cow variation (precision) and means (accuracy) were used
in the calculation of between cow coefficient of variation (CV, %) and total CV and
repeatability. Where single measurements were available for each method Pearson’s
correlation was reported and where repeated measures per subject were available repeated
measures correlation was reported.

Respiration chambers were the most precise method, as can be seen by the smaller
between cow CV% and total CV compared to alternative methods, and respiration chambers
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are by definition the most accurate. All methods tested showed high correlations with
respiration chambers but none of the correlations exceeded 0.90. This is in part due to the
increased imprecision of alternative methods, as even the most accurate and precise method
will compare poorly to a less precise method. These correlations are also likely to be
underestimated because none of the methods could be recorded simultaneously with
respiration chambers and had to be recorded in cross over designs. Consequently, the true
value for each cow may have changed due to changes in the underlying biology of the cow
over time between measurements. Comparisons among alternative methods
generally had lower correlations than comparisons with respiration chambers,
despite having relatively higher numbers of animals and in most cases
simultaneous or near simultaneous repeated measures per cow per method due
to the increased variability and imprecision of alternative methods as is seen by
the increased CVs or due to the possibility that different aspects of CH4 emission are
captured using different methods.

For the methods with repeated measures per cow the two mass flux methods, SF6 and
GreenFeed, had the highest repeated measures correlations (0.87 + 0.08 and 0.81 + 0.10)
which outperformed the concentration based NDIR method using CO2 tracer gas. Of the two
concentration methods evaluated against respiration chambers using single measurements,
NDIR Peaks had a higher correlation (0.89 + 0.07) than the PAIR CO2 tracer gas (0.80 +
0.10). The study of Hristov et al. (2016) comparing SF6 and GreenFeed reported a low
Pearson correlation of 0.40, despite having a large number of animals with repeated
measures per method, the authors appear not to have estimated a repeated measures
correlation, which could be larger. Estimating a repeated measures correlation between these
two mass flux methods is a priority as it would clarify the inexplicable disagreement between
two methods which both correlate highly with the gold standard method. With the exception
of the aforementioned study, the imprecision was low in the mass flux measure comparisons
as compared to the concentration-based methods.

Two of the sniffer methods evaluated, FTIR CO.t1 and NDIR CO.t1, correlated close to
unity (0.97), most likely due to the shared prediction equation for CO2 tracer gas.
Nevertheless, all correlations derived from actual data were positive. This suggests that
combination of datasets obtained with different methods is a realistic proposition for genetic
studies. Calculation of adjustment or weighting factors for bias, accuracy and
precision would improve the value of combined datasets.

Pro’s and con’s of devices

7.2.1 Daily methane emission measures

Due to the large diurnal variation in enteric CH4 emission in relation with feeding pattern
(Grainger et al., 2007; Jonker et al. 2014), the highest accuracy of daily CH4 production rate
(DMPR) will be obtained with methods that encompass the whole day emissions. Two
methods are available: Respiration Chambers (RC) and SF6 methods.

Alternative methods are based on short-term measures of CH4 production rate: Portable
Accumulation Chambers (PAC) for sheep and GreenFeed Emission Monitoring
(GEM) systems for cattle and sheep (Hegarty, 2013).
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7.2.2 DMPR with Respiratory Chambers (RC)

It should be noted that CH4 emissions recorded in RC also include gases from flatulence in
addition to eructed and expired CH4. Compared with mouth exhaled CH4, CH4 from
flatulence is generally considered as limited.

Feed intake in the RC may not be representative of the normal animal feed intake (Bickell et
al., 2014; Llonch et al., 2016; Troy et al., 2016). As a consequence, the DMPR measured could
be biased. Animals are usually not fed ad libitum when recorded in RC. It is therefore
recommended to compare animal or diet effects on Methane Yield (MY) calculated as the
ratio of the observed DMPR/DMI during the RC recording in order to take into account
possible differences among animals in DMI bias. Animal effects can also be compared on the
Residual Methane Production Rate (RMPR) the difference between the observed DMPR and
the expected DMPR obtained by regression of observed DMPR on DMI recorded during RC
test. Residual traits, however, require a large number of recorded animals for valid
adjustment.

Repeatability coefficients between measures taken on consecutive days are very high,
rep=0.85 [0.75 to 0.94] for MeY and RMPR of cattle and sheep (Grainger et al., 2007;
Donoghue et al., 2016; Pinares-Patino et al., 2013). It has been concluded that 1-day
measurement duration could be recommended as it will have a limited impact, less than 5%,
on the efficiency of selection of MeY as compared to a selection on a 2-day measurement
duration.

When repeated measures of CH4 emission of sheep are taken few days to two weeks apart the
repeatability coefficients of MeY and RMPR drops to rep=0.36 [0.26 to 0.41] on average
(Pinares-Patino et al., 2013; Robinson et al., 2014a). Interestingly, repeatability maintains at
a moderate level, rep=0.27 [0.23 to 0.53], when animals were measured several months or
even years apart. Similar results were found in Angus cattle, rep=0.20, between MeY and
RMPR measures taken more than 60 days apart (Donoghue et al., 2016).

7.2.3 Conclusions and recommendations

All these results show that animal effects exist on daily CH4 emissions and
animal differences are partially under genetic determinism. This trait, as any other
physiology trait, is subject to number of environmental effects and to evolution with time.
Ranking animals on their CH4 emission requires standardization of the testing environment.
Although highly precise, a single measure recorded in RC is not sufficient for
characterizing an animals emission aptitude. In order to characterize a long term
phenotype it is therefore recommended to record several 1-day measures, each a
few weeks apart, instead of one single 2-day measure, keeping the testing
environment as constant as possible.

7.2.4 DMPR with GEM

At each visit CH4 and CO2 fluxes are measured and animal emission rates are obtained by
averaging the short-term flux measures recorded during the testing period. In a review of
published results (Dorich et al., 2015; Hammond et al., 2015; Velazco et al., 2016) Hammond
et al. (2016A) concluded that the GEM system provides similar DMPR values as the RC or
SF6 methods. Similar accuracy was found by Arbre et al. (2016) for CH4 yield measured with
GEM as compared with RC and SF6 measures.

The spot measures are highly variable since they include, in addition to the animal and
environment effects, an important within-animal and within-day variance. The latter is
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considered as an error term. Consequently, the precision of the animal estimates increase
with the number of spot measures averaged per animal. From the results reported by Renand
and Maupetit (2016) with 124 beef heifers controlled indoors, it can be shown that the
coefficient of variation of that error term (CVe) decreases exponentially with the number of
spot measures: 13.7%, 10.8%, 7.9% and 4.9% with 5, 10, 25 and 100 measures respectively.
Results reported by Arbre et al. (2016) with 7 lactating dairy cows controlled indoors, also
show that CVe decreases from 12.8% to 11.4%, 9.5% and 6.8% when the number of measures
increases from 5 to 10, 25 and 100. With dairy cows at pasture, Waghorn et al. (2016) showed
that the coefficient of variation among 36 dairy cows at pasture was half (6.6 and 7.5%) when
CH4 production rate was averaged over 16 days with approximately 18 to 26 measures per
cow, as compared with 4 day averages with 4 to 6 measures per cow (13.0 and 17.2%). These
authors concluded that at least 16 days are required to give confident estimates.

With 45 to 50 spot measures recorded during 2 weeks Arbre et al. (2016) and Renand and
Maupetit (2016) obtained repeatabilityof 0.78 and 0.73 for DMPR estimates of 7 dairy cows
and 124 beef heifers, respectively. A similar repeatability coefficient (0.74) was obtained by
Huhtanen et al. (2015) with 25 dairy cows recorded during 3 weeks, with 20 to 30 samples
per cow. Interestingly, these latter authors fitted gas concentration, airflow and head position
measurement equipments into two automatic milking systems that were used to measure
CH4 emission of 59 dairy cows during two periods of 10 days. After filtering data for
acceptable head-position, the repeatability of DMPR was 0.75.

Considering the need to average enough spot measures and the advantage of measuring
DMPR over long periods to take into account the emission variability with time, the GEM
system should be run over several weeks. Averaging 40 to 50 spot measures per
animal should provide a precise measure of the animal DMPR. The minimum duration of
CH4 recording will depend on the number of spot measures actually recorded per day.

The GEM system relies on animals that voluntarily visit the GEM unit when attracted with
pellets dispensed by a feeder at a controlled rate. The visitation frequency appears to be
highly variable among different studies reported up to now. While some experiments report a
very high frequency of cattle visiting the GEM units (up to 96%), the proportion of not
visiting animals may be very high in other studies (up to 60%) (Dorich et al., 2015;
Hammond et al, 2015A, 2015B; Arbre et al., 2016; Renand and Maupetit, 2016; Velazco et al.,
2016; Waghorn et al., 2016). The reason why some animals may not visit the unit is not
obvious. That problem of no or low visiting frequency may jeopardize the precise ranking of
animals on their DMRP. Training them is an important requisite for the success of DMPR
recording with the GEM system (see recommendations on the C-Lock website). Palatability
of the pellets used to attract the cattle should be high compared with the diet they receive in
the trough or the grass they are grazing.

In addition to the effect on precision, the low visiting frequency may have an impact on
accuracy if associated in some animals with specific time of visiting. Enteric CH4 emissions
have a diurnal variation with a minimum at the end of night, before the first feeding, and a
steady increase after each feeding. A weak diurnal pattern in CH4 emission was detected by
Velazco et al. (2016) using GEM systems. Renand et al. (2013) observed significant
differences between visit hours (CV=10%). If some animals visit the GEM at specific hours of
the day, the rough average of spot measures will be biased. In order to get rid of this time
effect on the DMPR measure, Dorich et al. (2015) and Hristov et al. (2016) came up with a
protocol where the GEM units were moved sequentially from one cow to the next one over
several days, so that all the cows were equally measured during different hours of the day.
That protocol is possible only with tie stall cattle and is obviously not applicable for
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measuring large number of animals. However, with animals controlled in their production
environment, the bias generated by potential specific visiting patterns can actually be
removed if the measuring hour is taken into account in the linear model when estimating the
animal effect.

As voluntary visiting of the GEM system may be a limiting factor under some conditions,
measures of DMPR can be designed when animals are drinking or eating, i.e. several times
per day. Velazco et al. (2016) showed that a GEM water unit prototype designed and built by
C-Lock Inc., displayed different eructation patterns as compared with a plain GEM unit. They
concluded that further development appears necessary before any application. Troy et al.
(2016) tested a CH4 hood (MH) system placed above an automated feeding bin. That system
includes an air extraction fan for each hood with continuously recorded airflow. Methane
concentration was measured using 4 infrared analyzers, one for 8 hoods. In this system one
CH4 concentration value was recorded every 6 min. With 9 to 12 feeding events per day on
average and feeding visits averaging 8 min, there were between 12 to 16 CH4 concentration
values recorded and CH4 production rates calculated per day. The measurements were
recorded during 46 days and ranking of animals in relation with the test duration was
studied. However no repeatability coefficient was given for comparison with other methods.
That system was compared with respiratory chambers results in two experiments with 82
and 8o steers fed different diet-treatment combinations. Over the whole experimental
design, a good concordance was found between MH and RC results as a
consequence that both methods detected similar effects for the diet-treatment effects.
However no correlation was given between both methods within diet-treatment samples that
are the essential information needed to evaluate the ability of this new method to predict
individual DMPR.

7.2.5 Conclusions and recommendations

With only a single gas analyzer for 8 feed bins, the time when useful CH4 concentration is
recorded is certainly too short for including several eructation peaks. Fitting one gas analyzer
per feed bin will combine advantages of the measurement time during visits of the GEM
system with the visiting frequency allowed by the MH system.

7.2.6  MPR with PAC

The delay between the measurement and the last feeding has to be carefully monitored and
taken into account when calculating animal emission values. As individual DMI is difficult to
record, direct measurement of CH4 yield (MY=MPR/DMI) turns out to be impossible.
Although not representative of a whole day production rate, that method can be used to
characterize individual CH4 emission rates if standardized protocols are applied. It was first
validated with 40 ewes measured 1 hour in PAC after three 22-hour measures in RC: a
correlation of 0.71 was found between the two measures of CH4 production rate over 1 or 22
hours (Goopy et al., 2011). The 1-hour CH4 production measure in PAC has a moderate
repeatability of rep=0.50 [0.37 to 0.60] when taken few days to seven weeks apart (Robinson
et al., 2015; Goopy et al., 2016). Heritability coefficient of this 1-hour CH4 production
measure is estimated to h2=0.12 in a population of 2,279 sheep (Robinson et al., 2014b) with
a repeatability coefficient rep=0.25.

Conclusions and recommendations

The authors recommend using the mean of 3 PAC measurements in order to get accurate
phenotype estimates.
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Proxies

Introduction

Large-scale measurements of enteric CH4 emissions from dairy cows are needed for effective
monitoring of strategies to reduce the carbon footprint of milk production, as well as for
incorporation of CH4 emissions into breeding programs. However, measurements on a
sufficiently large scale are difficult and expensive. Proxies for CH4 emissions can provide an
alternative, but each approach has limitations. Negussie et al. (2019) recently showed the
potential of proxies proxies that are easy to record in the farm. These proxies can be gathered
in most farms and are a realistic threshold accuracy that can be obtained without more fancy
proxies. Several techniques have been developed for the measurement of CH4 emissions
from ruminants, with varying degrees of accuracy (see reviews by Cassandro et al., 2013 and
Hammond et al., 2016A), but routine individual measurements on a large scale (a requisite
for genetic selection) have proven to be difficult and expensive (Pickering et al., 2015;
Negussie et al., 2016). Therefore, identifying proxies (i.e. indicators or indirect traits) that are
correlated to CH4 emission, but which are easy and relatively low-cost to record on a large
scale, is a much needed alternative. Proxies might be less accurate, but could be measured
repeatedly to reduce random noise. The (potential) proxies range from simple and low-cost
measurements such as body weight, to high-throughput milk MIR, to more demanding
measures like rumen morphology, rumen metabolites or microbiome profiling.

Combining proxies that are easy to measure and cheap to record could provide predictions of
CH4 emissions that are sufficiently accurate for selection and management of cows with low
CH4 emissions.

Available Proxies

A large array of CH4 proxies differing widely in accuracy and applicability under different
conditions have been reported. The ideal proxy would be highly phenotypically and
genetically correlated with CH4 emissions and could easily, and potentially repeatedly, be
measured on a large scale. A systematic summary and assessment of existing knowledge is
needed for the identification of robust and accurate CH4 proxies for future use. Table 6
summarizes proxies for CH4 production, and Table 7 summarizes results from combining
proxies to improve predictability of proxies for CH4 prediction.

Table 6. Available methane proxies include: (1) feed intake and feeding behaviour, (2) rumen
function, metabolites and microbiome, (3) milk production and composition, (4) hind-gut and
faeces, and (5) measurements at the level of the whole animal.

Proxy Description / conclusion Reference

(1) feed intake and feeding behavior

Dry matter intake | DMI predict MeP with R2= 0.06-0.64, | Ellis et al. (2007); Mills et
and ME intake predict MeP with R2= al. (2003); Negussie et al.

0.53-0,55 (2019)
gross energy intake | predict MeP with RMSPE= 3.01. Moreas et al. (2014)
(GE)
Feeding behavior magnitude and direction of relation to | Nkrumah et al. (2006);
MeP varies across studies Jonker et al., 2014
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Proxy

Description / conclusion

Reference

Rumination time

High rumination relates to more milk,
consume more concentrate and
produce more CH,, lower RMP and
Mel

Watt et al. (2015); Lopez-
Paredes et al. (2020)

Rumen
microbiome

The metagenome can predict DMI,
and classify high vs low intakes

Delgado et al. (2019)

(2) rumen function, metabolites and microbiome

Dietary anti- Inhibitors of the enzyme methyl Denman et al., 2007;

methanogenic coenzyme-M reductase: Knight et al., 2011; Haisan

compounds bromochoromethane; chloroform; 3- | et al., 2014; Romero-Perez
nitrooxypropanol (not always) et al., 2014, 2015

Dietary Induce reductions in both MeP and Iwamoto et al., 2002; Kubo

antimicrobial methanogens numbers: nitrates, et al., 1993; van Zijderveld

compounds anacardic acid (cashew nut shell et al., 2010; Veneman et al.,
liquid), monensin, isobutyrate 2015; Shinkai et al., 2012;

Wang et al., 2015
Rumen High Fibrobacteres, Quinella ovalis Kittelmann et al., 2014;

microbiome profile

and Veillonellaceae and low
Ruminococcaceae, Lachnospiraceae
and Clostridiales associate with low-
CH, phenotypes and high propionate

Protozoa concentration

Wallace et al., 2014; Sun et
al., 2015

Guyader et al., 2014

predict MeP with R2 up to 0.55

Ross et al. 2013a; Ross et
al. (2013b)

Microbial genes

20 (out of 3970 identified) related to
CH, emissions

Roehe et al. (2016)

Rumen volume (X-

Low-MeY sheep had smaller rumens.

Pinares Patifio et al., 2003;

ray Computed Faster passage= less time to ferment Goopy et al., 2014; Okine et
Tomography) and | substrate - explained 28% of variation | al. (1989)

retention time in MeP

blood reduced MeY Barnett et al. (2012)
triiodothyronine

concentration

Acetate to positively associated with CH, Mohammed et al., 2011;

propionate ratio in
ruminal fluid

emissions, but not confirmed in all
studies, sometimes opposite relation

Fievez et al., 2012; Chung
et al., 2011; Van Zijderveld
etal., 2010

(3) milk Production and composition

modelling
approach

Doubling milk production only adds 5
kg to the MeP and so greatly reduces
MeY

Kirchgessner et al. (1995);
Hristov et al. (2014)

@

Methane - Page 24 of 48.



Overview
Section 20 — Methane
Version April, 2020

Proxy Description / conclusion Reference
Milk fat content key explanatory variable for predicting | Moreas et al. (2014);
CH,: A moderate negative genetic Kandel et al., 2014A, B;
correlation with infrared predicted Vanlierde et al. (2015)
Mel: correlations MeP=0,08 and
Mel=-0.13
A positive relationship between VFA Vlaeminck et al., 2006; Van
proportions and methanogenesis is Lingen et al., 2014
expected as a consequence of the
common biochemical pathways;
Dietary unsaturated fatty acids are
negatively associated with CH,
emissions
Milk protein yield | Correlation with Mel=-0.47 or -0.09, Kandel et al. (2014);
MeP=0.53 Vanlierde et al. (2015)
Lactose Variable correlations: MeP=0,33; Miettinen and Huhtanen

Mel=-0.21; R = 0.19 for CH, emission

(1996); Dehareng et al.
(2012)

Somatic cell score

Genetic correlation with infrared
predicted Mel: R=0.07

Kandel et al. (2014A, B)

Prediction
equations Milk FA
and CH, emissions,
including from
MIR data

R2 ranged between 47 and 95%;
relationships between the individual
milk FA and MeP differed
considerably and the correlations
between CH, and milk FA vary
throughout the lactation

Chilliard et al. (2009);
Delfosse et al. (2010);
Castro-Montoya et al.
(2011); Dijkstra et al.
(2011); Kandel et al. (2013)
Mohammed et al. (2011);
Van Lingen et al. (2014);
Williams et al. (2014);
Dijkstra et al. (2016); Rico
et al. (2016); Van Gastelen
and Dijkstra (2016);
Vanrobays et al. (2016);
Bougoin et al., (2019)

(4) hind-gut and feces

Whole tract
digestibility
(potential as
supporting factors
in the prediction of
enteric CH,
emissions)

Main effects relate to rumen (see
above), but energy digestibility as a
supporting factor to GE intake
improved the accuracy of CH,
prediction, despite the fact that there
was no direct linear relationship
between energy digestibility and MeY
and in % of GE intake

Yan et al., 2009¢

Ratio of acetic and
butyric acid

Methane yield positive relation

Moss et al., 2000
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Proxy Description / conclusion Reference

divided by

propionic acid

(5) Whole animal measurements

Body weight and prediction models; primary predictor | Moraes et al. (2014); Holter

conformation for enteric MeP and Young, 1992; Yan et al.,

2009

Body weight Relationship with Mel: r = 0.44; Antunes-Fernandes et al.
relationship between body weight and | (2016); Demment and Van
rumen capacity Soest, 1985

Body weight Key explanatory variable for enteric No reference available
MeP

Conformation indicators for rumen volume (via feed | Agnew and Yan, 2000

traits: affects intake and rumen passage rates); BCS

enteric MeP

Lactation stage Complementary proxy Vanlierde et al. (2015)

It is evident that no single proxy offers a good solution in terms of all of these attributes,
though the low cost and high throughput make milk MIR a good candidate for further work
on refining methods, improving calibrations and exploring combinations with other proxies.

Combining proxies for methane

Although milk MIR shows promise as a single proxy for CH4 emissions, there may be
advantages in using two or more proxies in combination. There are two potential reasons
why a combination of proxies might be appropriate: (i) proxies may describe independent
sources of variation in CH4 emissions, and (ii) one proxy allows correction for shortcomings
in the way the other proxy describes CH4 emissions (e.g. taking into account lactation stage if
CH4 emissions prediction coefficients change during the lactation). See also Negussie et al.

(2019).
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Proxy combinations

Results

References

Rumen microbiome + VFA

Combination of rumen VFA
proportions and pH +
modelling may be more
informative

Brask et al. 2015

Methanogen abundance in
rumen fluid + proxy, a
chemical marker for
methanogens (archaeol)

McCartney et al. (2013)

Fecal ether lipids (ratio of
diether to tetraether lipids) +
rumen pH

Combining measurements of
rumen VFA, pH and the
microbiome should be more
informative for predicting CH,
emissions

McCartney et al.
(2014); Ann et al., 1996

Feed intake (determined by
body weight, production level,
growth rate and feed quality)

Main driver for CH, emissions;
should be all included in

models for CH,

Moraes et al. 2014,

DMI and diet composition

Combine database to predict
CH,

Niu et al., 2018; Van
Lingen et al., 2019

Range of prediction equations
for CH, production

Feed intake = primary
predictor of total CH,
production (accounted for 52 to
64%); Combining more factors
did indeed improve the
prediction equation by 15 to
35%

Ramin and Huhtanen
(2013); Knapp et al.,
2015; Sauvant and
Noziére (2016)

Rumen measurements (VFA,
pH, protozoa counts) + feed
intake (total DMI, forage DMI
and FA intake) + production
parameters (milk yield and
composition) + milk FA

Suggest that milk FA predict
CH, emission better (R2= 0.74)
compared to rumen variables,
feed intake and production
parameters (R2 < 0.58). Total
combination: R2= 0.90

Mohammed et al.
(2011)

Modelling

specific prediction equations

may need to be developed, or
diet composition may need to
be included in the prediction

equations

Mohammed et al.
(2011)

Feed intake + diet
composition + milk
production + milk FA

CH, prediction equations: best
fit = combining milk FA, feed
intake, diet composition, and
milk production (R2 = 0.84)

Rico et al. (2016);
Bougoin et al. (2019)

MIR + lactation stage

MIR spectroscopy (coefficient
of determination = 0.68 and

Dehareng et al. (2012);
Vanlierde et al. (2015)
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Proxy combinations Results References

0.79), predictions at different
stages of lactation were not
biologically meaningful +
lactation stage refined the
model: showing a biologically
meaningful behavior
throughout lactation: an
increase in CH, production
after calving up to
approximately 100 DIM,
followed by gradual decline
towards the end of lactation

Milk yield, fat percentage + Combine database to predict Cassandro et al., (2010;
type traits CH, using official milk Cassandro, 2013)
recording system and type
evaluation.

Building an index for methane

For some of the proxies, the heritability and correlations with CH4 output are known: e.g.
Vanrobays et al. (2016) estimated heritability of 0.25 for CH4 production (g/d) and in the
range 0.17 - 0.42 for different classes of milk FA; phenotypic and genetic correlations
between MeP and milk FA varied between -0.03 and 0.16, and between -0.02 and 0.32
(C18:0), respectively. The genetic correlation between Mel and milk yield was estimated by
Dehareng et al. (2012) at -0.45; that between milk yield and protein percentage at -0.54
(Miglior et al. 2007). This would give a genetic correlation between Mel and protein
percentage in the range [-0.5, 0.9], with likelier values for positive correlations. The most
probable value in the given range could then be estimated (from the prior distribution of the
missing correlation and the joint likelihood of the two known correlations given the values in
the range). Such data could in the future be used to develop an index for breeding on CH4
emission.

Proxies discussion

The greatest limitation of proxies today is the lack of robustness in their general applicability.
Future efforts should therefore be directed towards developing combinations of proxies that
are robust and applicable across diverse production systems and environments. Here we
present the present status of the knowledge of proxies and their predictive value for CH4
emission. Proxies related to body weight or milk yield and composition are relatively simple,
low-cost, high throughput, and are easy to implement in practice. In particular, DMI and
milk MIR, along with covariates such as lactation stage, are a promising option for prediction
of CH4 emission in dairy cows. No single proxy was found to accurately predict CH4, whilst
combinations of two or more proxies are likely to be a better solution. Combining proxies can
increase the accuracy of predictions by up to 15 - 35%, mainly because different proxies
describe independent sources of variation in CH4 and one proxy can correct for
shortcomings in the other(s). One plausible strategy could be to increase animal productive
efficiency whilst reducing CH4 emissions per animal. This could be achieved by reducing
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MeY and/or decreasing DMI provided that there is no concomitant reduction in productivity
or increase in feed consumption (Pickering et al., 2015).

Combining diet-based measurements with other proxies for methane emissions.

Feed intake appears a reasonably adequate predictor of MeP: generally, heavier animals have
higher maintenance requirements, so eat more and produce more CH4. However, a
substantial level of variation is left unaccounted for. This suggests that more detailed
information on dietary composition is needed. This is also important when one wants to
account for MeP on diets of similar DMI but of different nutrient profiles.

The prediction accuracy of MeP strongly depends on the accuracy of quantifying the VFA
produced in the rumen (Alemu et al., 2011). The type of VFA formed during rumen
fermentation depends on the type of substrate fermented (Bannink et al., 2011), such as the
dietary content of neutral detergent fiber and starch. The type of substrate fermented thus
appears a useful factor for predicting MeP (Ellis et al., 2007), indicating that including a
description of variation in dietary quality caused by nutritional factors results in improved
prediction accuracy of CH4 emission (Ellis et al., 2010; Moraes et al., 2014).

Rumen

When feed intake is kept constant, a higher rumen capacity results in a lower passage rate
(Demment and Van Soest, 1985), resulting in a higher MeP (Moraes et al., 2014). Proxies
based on rumen samples are generally poor to moderately accurate predictors of CH4, and
are costly and difficult to measure routinely on-farm. VFA are a proxy for rumen CH4
emissions. Using rumen fermentation data obtained from in vitro gas production, Moss et al.
(2000) reported a negative linear relationship between CH4 production and the ratio of
(acetic + butyric acid)/propionic acid. However, by combining different information sources,
either related to feed intake or to the impact of feed intake on the VFA composition, a better
proxy with an improved accuracy can be achieved. This way, the prediction equation for CH4
production can be optimized (higher accuracy).

The relationship between rumen methanogen abundance and methanogenesis is less clear
when changes in enteric CH4 emissions are modulated by diet or are a consequence of
selecting phenotypes related to feed efficiency or MeY. Whereas in some reports there was a
significant positive relationship (Aguinaga Casanas et al., 2015; Arndt et al., 2015; Sun et al.,
2015; Wallace et al., 2015), in many others the concentration of methanogens was unrelated
to methanogenesis (Morgavi et al., 2012; Kittelmann et al., 2014; Shi et al., 2014; Bouchard et
al., 2015). Bouchard et al. (2015) even reported a reduction in methanogens without
significant decrease in MeP for steers fed sainfoin silage. Sheep selected for high or low MeY
showed no differences in methanogen abundance, though there was a strong correlation with
expression of archaeal genes involved in methanogenesis (Shi et al., 2014).

Hindgut and Feces: whole tract digestibility variables cannot serve as primary predictors for
enteric MeP in cattle or sheep, but might be used as supporting factors to improve the
accuracy of prediction of CH4 output.

Protozoa and other rumen microbes

Protozoa are net producers of H2 and their absence from the rumen is associated with an
average reduction in enteric MeP of approximately 11% (Hegarty, 1999; Morgavi et al., 2010;
Newbold et al., 2015). Using a database of 28 experiments and 91 dietary treatments,
Guyader et al. (2014) showed a significant decrease of 8.14 g CH4/kg DMI for each log unit
reduction in rumen protozoal abundance. About 21% of experiments within this dataset
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reported CH4 changes unrelated to protozoal abundance, highlighting the multifactorial
nature of methanogenesis.

Roehe et al. (2016) observed that the ranking of sire groups for CH4 emissions measured
with respiration chambers was the same as that for ranking on archaea/bacteria ratio,
providing further evidence that host control of archaeal abundance contributes to genetic
variation in CH4 emissions - at least in some circumstances. Across a wide geographical
range, the methanogenic archaea were shown to be highly conserved across the world
(Henderson et al., 2015). This universality and limited diversity could make it possible to
mitigate CH4 emissions by developing strategies that target the few dominant methanogens.
However, one clear limitation of metagenomic predictions compared to genomic predictions
was that the microbiome of the host is variable - that is, it may change in response to diet or
other environmental factors over time, whereas the hosts DNA remains constant.

Rumen microbial genes

These included genes involved in the first and last steps of methanogenesis:
formylmethanofuran dehydrogenase subunit B (fmdB) and methyl-coenzyme M reductase
alpha subunit (mcrA), which were 170 times more abundant in high CH4 emitting cattle.
Whilst gene-centric metagenomics is not low-cost or high-throughput, these results point to
potential future proxy approaches using low-cost gene chips.

The difference in gene expression activity as opposed to abundance was also reported by
others (Popova et al., 2011). However, there are also studies in which there was no
relationship with gene expression (Aguinaga Casanas et al., 2015). There are some
methodological and experimental differences that might explain some of the apparent
contradictions, such as the type of gene target and primers used for nucleic acid
amplification. Effects are seen most clearly when the difference in MeP between groups of
animals is large (e.g. Wallace et al. (2015) used treatments that generated a 1.9-fold
difference CH4 emissions).

Proxies based on measurements in milk

Milk yield alone does not provide a good prediction of MeP by dairy cows. Yan et al. (2010)
indicated that CH4 as a proportion of GE intake or milk energy output was negatively related
to milk production. It is less clear if MeY can be predicted from milk yield when making
comparisons across studies.

Milk MIR spectroscopy is relatively inexpensive, rapid and already routinely used technology
in milk recording systems to predict fat, protein, lactose and urea contents in dairy milk to
assist farm management decisions and breeding. It can be used as a promising strategy to
exploit the link between enteric CH4 emission from ruminants and microbial digestion in the
rumen by assessing the signature of digestion in milk composition. Milk MIR data can be
obtained through regular milk recording schemes, as well as, on a herd level, through
analysis used for milk payment systems. Diverse milk phenotypes can be obtained by MIR
spectrometry — including detailed milk composition (e.g. FA as reported by Soyeurt et al.,
2011), technological properties of milk, and cow physiological status (De Marchi et al., 2014;
Gengler et al., 2016). Several of these novel traits (i.e. FA composition) have been identified
as potential indicators of CH4 emission. Therefore, using MIR to predict MeP (Dehareng et
al. 2012; Vanlierde et al. 2013, 2015; Van Gastelen and Dijkstra, 2016) is also a logical
extension of its use to quantify the major milk components (i.e. fat, protein, casein, lactose,
and urea) and minor components (e.g. FA). Dehareng et al. (2012) assessed the feasibility to
predict individual MeP from dairy cows using milk MIR spectra. Their initial results suggest
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that this approach could be useful to predict MeP at the farm or regional scale, as well as to
identify low-CH4 emitting cows. According to Van Gastelen and Dijkstra (2016), MIR
spectroscopy has the disadvantage that it has a moderate predictive power for CH4 emission,
both direct and indirect (i.e. via milk FA), and that it lacks the ability to predict important
milk FA for CH4 prediction. They concluded that it may not be sufficient to predict MeP
based on MIR alone. It is, however, possible to improve the accuracy of prediction through
the combination of MIR with some animal characteristics such as lactation stage (Vanlierde
et al., 2015). The advantage of this latter development is that this type of prediction can be
done on a very large scale inside a routine milk recording system (Vanlierde et al., 2015).

PROXIES: FUTURE DEVELOPMENTS AND PERSPECTIVES

There is currently limited consensus on which phenotype to use to lower the carbon footprint
of milk production through genetic selection. This could be MeP, Mel or MeY. The direct goal
would be CH4 production; the relationship with milk production and/or feed intake could be
accounted for by including these in the final selection index or scheme. However, one might
argue that it would be more effective/accurate to directly use milk production- or feed intake-
corrected CH4 (e.g. CH4 intensity or yield) as breeding goal.

The analysis of proxies in terms of their attributes shows that proxies that are based on
samples from the rumen or related to rumen sources are poor to moderately accurate
predictors of CH4. In addition, these proxies are too costly and difficult for routine on-farm
implementation. On the other hand, proxies related to BW, milk yield and composition (e.g.
milk FA) are moderately to highly accurate predictors of CH4 and relatively simple, low-cost
and easier to implement in practice (Cassandro et al.,2010; Cassandro, 2013). Particularly,
milk MIR and the prediction of CH4 based on milk MIR along with other covariates such as
lactation stage is a promising alternative: that is accurate, cheaper and easy to be
implemented in routine milk analysis at no extra cost.

Therefore, in the future advances in infrared, photoacoustic and related technologies will
push the boundaries, particularly in focusing on developments of fast and portable
technologies. Such developments will lead to better and promising proxies for CH4 that will
enable a sizable throughput of CH4 phenotypes in dairy cows.

Antunes-Fernandes et al. (2016) already presented the use of metabolomics on milk to better
understand the biological pathways involved in CH4 production in dairy cattle. The
techniques used in that study are not suitable for large scale measurements, but rapid
developments in omics may offer tests and assay methodologies on blood, urine or milk
samples that will provide an additional tool for developing new / additional proxies for CH4
emissions in dairy cattle.

Conclusions

Measuring CH4 emission on large numbers of cows is a challenge. The high costs and low
throughput of RC restrict their use to research studies measuring CH4 emissions on small
numbers of individual animals. Respiration chambers remain the gold standard method, but
benchmarking alternative methods against RC is challenging because simultaneous replicate
measures per cow are not feasible. Methods like SF6 and GreenFeed require lower capital
investment and running costs than RC, and have higher throughput and potential for use in
extensive and grazing situations, but costs are still prohibitive for recording large numbers of
animals. Methods based on concentration are less precise and accurate than flux methods,
but they are viable for large scale measurement, which is a prerequisite of genetic
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evaluations. Further development is needed to increase accuracy and precision of
concentration methods. Several reviews of methods for measuring CH4 have made
qualitative judgements based on individual comparison studies without expanding scope to
genetic evaluations and considering repeated measure correlations between methods as
proxies for genetic correlations. Results confirm that there is sufficient correlation between
methods for all to be combined for international genetic studies and provide a much needed
framework for comparing genetic correlations between methods should these be made
available. Proxies have the potential to be used as predictors of CH4 production and
emission. Although proxies are less accurate than direct CH4 measurements they can be
easier, cheaper, and at high throughput, and may be therefore the best method in practical
situations, especially proxies related to milk measurements. Therefore, these proxies at the
population level, can provide useful information at genetic improvement that can be used to
reduce emissions following 3 ways: (1) intensification of animal production; (2) improving of
system efficiency and (3) the direct reduction of GHG emissions by breeding for reduced
predicting animals that are high or low GHG emitters.

Merging and sharing data in genetic evaluations
Genetic parameters for CH4 using a multi-country dataset

Early 2016 an attempt to make cross country evaluations of CH4 emissions from Holstein
dairy cattle was initiated. The work was based on data from NL, DK, AUS, UK and IR. In
total, 12,820 weekly CH4 emission records from 2,857 cows were available. Although
different equipment was used across countries to measure CH4 emissions, the research
aimed to define similar CH4 output phenotypes in each country. The analysed CH4 traits,
that are available in each country, are (1) CH4 production in g/d, and (2) CH4 intensity in
g/d per kg fat protein corrected milk (FPCM). In addition to these CH4 traits, CH4
concentration (in ppm) was available in Denmark, the Netherlands and UK, and the ratio
between CH4 and CO2 concentration was available in Denmark and the Netherlands.

Bivariate analyses were carried out to estimate genetic correlations between countries, using
an animal linear mixed model for all traits. Both univariate and bivariate analyses were
repeated with the GRM as well. With all weekly records, standardizing the trait in the full
dataset increased the heritability for CH4 production from 0.03 to 0.06. The heritability for
CHj4 intensity was slightly higher. The highest heritability with the full dataset is estimated
for the standardized CH4 concentration (0.19). Correlations estimated among CH4 traits
estimated with either the pedigree or the GRM were in same direction and of similar
magnitude. The genetic correlations show that when CH4 production increased, the CH4
concentration and the ratio between CH4 and CO2 increased as well.

The approach is novel, and no other attempt has been performed to make genetic analysis of
CH4 traits across countries. The analysis can be repeated in future studies where more data
hopefully will be available, and more effort can be made into improving both the fixed and
random part of the model.

Recommendations

The most important question: what method to use if you need to measure CH4? The answer
may be: it depends on what you like to do. In the Table 8 we summarize some experimental
conditions and designs, and make recommendations.
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Table 8. Recommendations for measuring methane in diverse experimental conditions and

designs.

Experimental condition and design

Methane mesurement method
recommendation

Need to measure absolute methane values —
animal numbers and location not important

Respiration chamber; SF6; GreenFeed

Need to rank animals from low to high
methane emission

Sniffer method

Need to measure methane on farm

Sniffer method; GreenFeed; PAC

Low budget measurements needed

Proxy / Proxies measurement

High animal numbers required

Sniffer method; Proxies measurement; LMD
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