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Summary of Changes 
Date of 

Change 
Nature of Change 

March 2020 

Draft from Feed & Gas WG put into standard template for ICAR 

Guidelines.  Separate out EDGP database to become as standalone 

appendix. 

April 2020 Edits and acknowledgements added by Feed & Gas WG. 

1 Introduction 

Increases in milk production through management and genetics have substantially improved 

feed efficiency and decreased costs per unit of product over recent decades. However, dairy 

systems are also associated with environmental costs (Baskaran et al., 2009), with methane 

(CH4) emissions associated with rumen microbial fermentation being both an important 

contributor to global greenhouse gas (GHG) emissions, as well as an avoidable loss of energy 

that could otherwise be directed into milk production. The livestock sector is responsible for 

14.5% of the global GHG (Gerber et al., 2013); dairy cattle account for 18.9% of these 

emissions, mainly in the form of enteric CH4 emissions (van Middelaar et al., 2014).   

Methane is a greenhouse gas with a global warming potential 28 times that of CO2 (Myhre et 

al., 2013). Methane from ruminant livestock is generated during microbial fermentation in 

the rumen and hindgut (enteric CH4), and from decomposition of manure. Enteric CH4 

contributes 80% of CH4 emissions by ruminants, and manure decomposition contributes 

20%. Enteric CH4 accounts for 17% of global CH4 emissions and 3.3% of total global 

greenhouse gas emissions from human activities (Knapp et al., 2014). There is, therefore, a 

significant research interest to find ways to reduce enteric CH4 emissions by ruminants. 

Ruminant animals have a digestive system to digest plant materials efficiently. Like most 

mammals, ruminants lack the cellulase enzyme required to break the beta-glucose linkages in 

cellulose, but they play host to diverse populations of rumen microbes that can digest 

cellulose and other plant constituents. When rumen bacteria, protozoa and fungi ferment 

carbohydrates and proteins of plant materials, they produce volatile fatty acids, principally 

acetate, propionate and butyrate. High fibre diets favour acetate synthesis. Synthesis of 

acetate and butyrate are accompanied by release of metabolic hydrogen, which, if allowed to 

accumulate in rumen fluid, has negative effects on microbial growth, and feed digestibility 

(Janssen, 2010). Rumen Archaea are microorganisms that combine metabolic hydrogen with 

CO2 to produce CH4 and water. Archaea play a vital role, therefore, in protecting the rumen 

from excess metabolic hydrogen, and the CH4 they produce is an inevitable product of rumen 

fermentation. 

A number of CH4 phenotypes have been defined (Hellwing et al., 2012); the most widely used 

is CH4 production (MeP) in liters or grams per day.  

The CH4 production trait is highly correlated with feed intake (Basarab et al., 2013; De Haas 

et al., 2017) and, thereby, with the ultimate breeding goal trait: milk production in dairy 

cattle. The economic value of daily dry matter intake and associated methane emissions in 

dairy cattle showed that increasing the feed performance estimated breeding value by one 

unit (i.e. 1 kg of more efficiently converted DMI during the cow’s first lactation) translates to 

a total lifetime saving of 3.23 kg in DMI and 0.055 kg in methane (Richardson et al., 2019). 
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Feed Performance was defined as a 1 kg increase in more efficiently used feed in a first parity 

lactating cow. These results show not only the relation between DMI and CH4 production, 

but also the economic relationship between these traits. Persistency of lactation was found to 

be positively associated with increased feed efficiency and decreased methane production 

and intensity. Feed efficiency was associated with lower methane intensity. Feed efficiency 

and methane emissions can be improved by selecting for dairy cattle that are smaller and 

have increased persistency of lactation. Efficiency and methane emissions can be further 

improved by improved management of body condition score and by extending lactations 

beyond the conventional 305-day length (Seymour, 2019). According to Ellis et al. (2007), 

DMI predicted MeP with an R2 of 0.64, and ME intake (MJ/d) predicted MeP with an R2 of 

0.53 for dairy cattle. AlternativePhenotype definitions include CH4 intensity (MeI), which is 

defined as liters or grams of CH4 per kg of milk, and CH4 yield (MeY), which is defined as 

liters or grams of CH4 per kg of dry matter intake (DMI) (Moate et al., 2016). Residual CH4 

production (RMP) is calculated as observed minus predicted CH4 production (Herd et al., 

2014, Berry et al., 2015), with predicted values based on factors such as milk production, 

body weight and feed intake. At the moment, it is not obvious which of these phenotypes to 

use; but, it is important to monitor associations between the chosen CH4 phenotype and the 

other important traits in the breeding goal (e.g. production, fertility, longevity) to avoid 

unfavorable consequences. Berry and Crowley (2012) describe advantages and limitations of 

ration traits. For example, because feed efficiency traits are a linear combination of other 

traits it is not recommended to include them in an overall total merit index, which is a clear 

limitation. For all applications it is necessary to measure the CH4 emission of each animal 

individually. These guidelines are intended to make the right choices for this. 

Whilst diet changes and feed additives can be effective mitigation strategies for CH4 

emissions (Beauchemin et al., 2009; Martin et al., 2010; Hristov et al., 2013), their effects 

depend on the continued use of a particular diet or additive and there have been issues with 

the rumen microbiomes adapting to additives.  Rumen bacterial communities are highly 

dynamic after a diet switch and did not stabilize within 5 wk of cows grazing pasture 

(Bainbridge et al., 2016). In contrast, breeding for reduced CH4 emissions should result in a 

permanent and cumulative reduction of emissions (Wall et al., 2010). Several studies have 

shown that CH4 emissions by ruminants have a genetic component, with heritability in the 

range 0.20 – 0.30 (de Haas et al., 2011; Donoghue et al., 2013; Pinares-Patiño et al., 2013, 

Kandel et al., 2014A, B; Lassen and Lovendahl, 2016; López-Paredes et al. 2020). Breeding 

for reduced CH4 emissions, alone or together with other mitigation strategies, could 

therefore be effective in reducing the environmental impact of cattle farming and, possibly, 

also in increasing feed efficiency. Such a breeding scheme would require, as a fundamental 

starting point, accurate measures of individual CH4 emissions on a large scale. 

Several techniques have been developed for the measurement of CH4 emissions from 

ruminants, with varying degrees of accuracy (see reviews by Cassandro et al., 2013 and 

Hammond et al., 2016A), but routine individual measurements on a large scale (a requisite 

for genetic selection) have proven to be difficult to obtain and expensive to measure 

(Pickering et al., 2015; Negussie et al., 2016). Therefore, identifying proxies (i.e. indicators or 

indirect traits) that are correlated to CH4 emissions, but which are easy and relatively low-

cost to record on a large scale, would be a welcome alternative. Proxies might be less accurate 

but could be measured repeatedly to reduce random noise and in much larger populations. 

These guidelines are highly indebted to Garnsworthy et al. (2019). In this paper the methods 

to measure CH4 are compared with special emphasis to the genetic evaluation of dairy cattle. 
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2 Definitions and Terminology 

Table 1 contains a list of important definitions for terms and abbreviations used in these 

guidlelines. 

Table 1. Definitions of Terms used in these guidelines. 

Term Definition 

ADF Acid detergent fibre 

ADL Lignin 

BCS Body condition score 

CH4 Methane 

CV Coefficient of variation 

DIM Days in milk 

DMI Dry matter intake 

DMPR Daily methane production rate 

EE Ether extract 

Enteric 

methane 

Methane from ruminant livestock generated during microbial fermentation 

in the rumen and hindgut 

EOBC Essential oils and their bioactive compounds 

FTIR Fourier-transform infrared 

GE gross energy intake 

GHG Greenhouse gas  

LMD laser methane detector  

ME Metabolizable energy 

MeI CH4 intensity 

MeP CH4 production (liters or grams per day) 

MeY  CH4 yield 

MIR milk mid-infrared spectroscopy 

NDF Neutral detergent fibre 

NDIR Nondispersive Infrared 

PAC Portable accumulation chambers 

PAIR photoacoustic infrared 

Proxy Not methane itself, but a substance enabling to measure methane levels 

indirectly – easy, cheap, accurate, quantitative  

PY protein yield 

RMP Residual CH4 production 

RMPR Residual methane production rate 
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Term Definition 

RMSPE Root mean square prediction error 

SF6 SF6 tracer gas technique 

TMR Total mixed ration 

VFA Volatile Fatty Acid 

Ym Methane conversion rate 

 

Appendix 1 to this guideline (here) contains information about the EDGP database including 

examples of the data storage structure. 

3 Scope 

A variety of technologies are being developed and employed to measure CH4 emissions of 

individual dairy cattle under various environmental conditions, as is evidenced by frequent 

reviews (Storm et al., 2012; Cassandro et al., 2013; Hammond et al., 2016A; de Haas et al., 

2017). The first objective of the current guidelines is to review and compare the suitability of 

methods for large-scale measurements of CH4 output of individual animals, which may be 

combined with other databases for genetic evaluations. Comparisons include assessing the 

accuracy, precision and correlation between methods. Combining datasets from different 

countries and research centres could be a successful strategy for making genetic progress in 

this difficult to measure trait if the methods are correlated (de Haas et al., 2017). Accuracy 

and precision of methods are important. Data from different sources need to be appropriately 

weighted or adjusted when combined, so any methods can be combined if they are suitably 

correlated with the ‘true’ value. The second objective of the current guidelines, therefore, is to 

examine correlations among results obtained by different methods, ultimately leading to an 

estimate of confidence limits for selecting individual animals that are high or low emitters 

(see also Garnsworthy et al., 2019). 

4 Methane determining factors 

4.1 Diet and rumen microbiota 

Table 2 contains a list of dietary or microbiota factors that determine CH4 production. 

Table 2. Methane determining factors related to diet and rumen microbiota. 

Factors Reference 

The main determinants of daily methane production are dry 

matter intake and diet composition: the more feed consumed, 

and/or the greater the fibre content of the diet, the more 

methane is produced per day. However, per unit of DMI, and 

per unit of fat+protein yield the grass diet produced less 

enteric CH4 per cow than the TMR diet.  Nutritional 

approaches for methane mitigation include reducing the forage 

to concentrate ratio of diets, increasing dietary oil content, and 

dietary inclusion of rumen modifiers and methane inhibitors. 

Beauchemin et al., 2009; 

Cottle et al., 2011; Knapp 

et al., 2014; O’Neill et al., 

2011; Sauvant et al., 2011 

 

https://icarsecretariat.bitrix24.eu/~sFyfd
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Factors Reference 

Methane output per kg of product is affected mainly by cow 

milk yield or growth rate, and by herd-level factors, such as 

fertility, disease incidence and replacement rate. 

Garnsworthy, 2004 

Methane output varies considerably between individual 

animals. For animals fed the same feed, the between-animal 

coefficient of variation (CV) in methane was 8.1%. 

Blaxter and Clapperton, 

1965 

The amount of digestible nutrients consumed especially of the 

carbohydrate fraction (starch, sugar, N-free residuals) is 

reliable to estimate CH4 release with high precision. 

Furthermore, diets rich in fat reduced CH4 formation in the 

rumen. 

Jentsch et al., 2007 

DMI was also the most important determining factor, but there 

were different regression lines for maize silage and dried grass 

as the main roughage component: CH4 (g)=93+16.8×DMI(kg) 

and CH4 (g)=81+14.0×DMI(kg), respectively. Methane release 

was particularly dependent on the intake of crude fiber (CF) 

and ether extract (EE): CH4 (g)=63+80xCF (kg)+11xNFE 

(kg)+19xCP(kg)-195xEE (kg). 

Kirchgessner et al., 1991 

Methane linearly increased with NDF intake (CH4 

(L)=59.4×NDF[kg]+ 64.6) for cows together with their calves 

independent of the breed. 

Estermann et al., 2002 

Enteric CH4 could be predicted with the equation: CH4 

(g/d)=84+47×cellulose(kg/d)+32×starch(kg/d)+62×sugars 

(kg/d). 

Hindrichsen et al., 2005 

The higher the percentage concentrate the lower Ym. Zeitz et al., 2012 

Additives can sometimes have a methane reducing effect: 

higher dosages mitigate methane more. Saponins mitigate 

methanogenesis by reducing the number of protozoa, whereas 

condensed tannins act both by reducing the number of 

protozoa and by a direct toxic effect on methanogens. 

Beauchemin et al., 2008; 

Jayanegara et al., 2012; 

Zmora et al., 2012; 

Cieslak et al., 2013; 

Guyader et al., 2014 

Plant essential oils have been shown as promising feed 

additives to mitigate CH4 and ammonia emission, but results 

were inconsistent. 

Cobellis et al., 2016; 

Moate et al., 2011 

Nitrate and sulphate addition decreased the enteric methane 

emissions negatively affecting diet digestibility and milk 

production. The effects of the salts are additive. 

van Zijderveld et al., 

2010; van Zijderveld et 

al., 2011 

The methanogenesis in the rumen of calves is associated with 

the development of the ruminal protozoa population. The 

absence of protozoa in the rumen reduced both the CH4 

production and the digestibility of carbohydrates. 

Schönhusen et al., 2003 

Implementing good grazing management reduced gross energy 

intake loss as CH4 by 14%. 

Wims et al., 2010 
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4.2 Host genetics, physiology and environment 

A low-moderate proportion of variation in CH4 emissions among ruminants is under genetic 

control. Heritability coefficients of MeY and RMPR were h²=0.22 and 0.19 respectively in a 

population of 1,043 Angus growing steers and heifers measured during 2 days in RC 

(Donoghue et al., 2016). The heritability coefficient of MeY was h²=0.13 in a population of 

1,225 dual-purpose growing sheep measured during 2 days in RC (Pinares-Patino et al., 

2013). Table 3 contains information of heritability of traits related to CH4 production. 

Table 3. Heritability information of methane-related traits and measurements. 

Factors Reference 

List with several h2 Pickering et al., 

2015 

List with several h2 MPWG White 

paper Dec 18 

Methane emissions from individual cows during milking varied 

between individuals with the same milk yield and fed the same diet. 

Between-cow variation in MERm is greater than within-cow variation 

and ranking of cows for CH4 emissions is consistent across time. 

Variation related to body weight, milk yield, parity, and week of 

lactation/days in milk. The monitored variation might offer 

opportunities for genetic selection. 

Garnsworthy et 

al., 2011A; 

Garnsworthy et 

al., 2011B 

Mechanistic modelling approach: potential for dietary intervention as 

a means of substantially reducing CH4 emissions without adverse 

effects on dietary energy supply. 

Mills et al., 2001 

The CH4-to-CO2 ratio measured using the non-invasive portable air 

sampler and analyzer unit based on Fourier transform infrared (FTIR) 

detection method is an asset of the individual cow and may be useful 

in both management and genetic evaluations. 

Lassen et al., 

2012  

 

The estimated heritability for CH4 g/day and CH4 g/kg of FPCM were 

lower than common production traits but would still be useful in 

breeding programs 

Kandel et al., 

2013 

Genetic correlation between CH4 intensity and milk yield (MY) was -

0.67 and with milk protein yield (PY) was -0.46 in Holstein cows. 

Kandel et al., 

2014A, B 

Milk production and CH4 emissions of dairy cows seemed to be 

influenced by the temperature humidity index. 

Vanrobays et al., 

2013A 

Estimate the heritability of the estimated methane emissions from 485 

Polish Holstein-Friesian dairy cows at 2 commercial farms using FTIR 

spectroscopy during milking in an automated milking system by 

implementing the random regression method. The heritability level 

fluctuated over the course of lactation, starting at 0.23 (SE 0.12) and 

then increasing to its maximum value of 0.3 (SE 0.08) at 212 DIM and 

ending at the level of 0.27 ± 0.12. Average heritability was 0.27 ± 0.09. 

Pszczola et al., 

2017 

CH4 measured with a portable air-sampler FTIR detection method on 

3,121 Holstein dairy cows from 20 herds using automatic milking 

systems. The heritability of CH4_MILK was 0.21 ± 0.06. It was 

Lassen and 

Løvendahl, 2016 
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Factors Reference 

concluded that a high genetic potential for milk production will also 

mean a high genetic potential for CH4 production. The results 

suggested that CH4 emission is partly under genetic control, that it is 

possible to decrease CH4 emission from dairy cattle through selection, 

and that selection for higher milk yield will lead to higher genetic 

merit for CH4 emission/cow per day. 

CH4 production was measured of 184 Holstein-Friesian cows in. the 

milking robot with a in total 2,456 observations for CH4 production. 

Heritability for CH4 production ranged from 0.12 ± 0.16 to 0.45 ± 0.11, 

and genetic correlations with MY ranged from 0.49 ± 0.12 to 0.54 ± 

0.26. The positive genetic correlation between CH4 production and 

milk yield indicates that care needs to be taken when genetically 

selecting for lower CH4 production, to avoid a decrease in MY at the 

animal level. However, this study shows that CH4 production is 

moderately heritable and therefore progress through genetic selection 

is possible. 

Breider et al., 

2019 

CH4 concentration was measured with NDIR, and CH4 production 

was estimated from CH4 concentration and body weight. Heritability 

for CH4 concentration was 0.11 ± 0.03 and for CH4 production 0.12 ± 

0.04. Positive genetic correlation was observed with MY (0.17-0.21), 

PY (0.22-0.31) and FY (0.27-0.29). Other type traits showed positive 

correlation with methane production (chest width=0.26, angularity 

=0.19, stature =0.43 and capacity =0.31) possibly associated to higher 

milk feed intake from these animals. Rumination time was negatively 

correlated to CH4 production (-0.24) and CH4 concentration (-0.43). 

However, larger CH4 production and CH4 concentration was 

associated with shorter days open. 

López-Paredes et 

al. (2020) 

Genetic parameters of CH4 emissions predicted from milk fatty acid 

profile (FA) and those of their predictors in 1,091 Brown Swiss cows 

reared on 85 farms showed that enteric CH4 emissions of dairy cows 

can be estimated on the basis of milk fatty acid profile. Additive 

genetic variation of CH4 traits was shown which could be exploited in 

breeding programmes. 

Bittante and 

Cecchinato, 2020 

A total of 670 test day records were recorded on lactating Holstein 

Friesian cows reared in 10 commercial dairy herds. Predicted methane 

production (PMP) was estimated to be 15.33±1.52 MJ/d in dairy cows 

with 23.53±6.81 kg/d of milk yeild (MY) and 3.57±0.68% of fat 

content (FC). Heritability of MY was 0.09 with a posterior probability 

for values of h2 greater than 0.10 of 44%. Estimates of heritability for 

FC and protein content (PC) were 0.17 and 0.34, respectively, with a 

posterior probability for values of h2 greater than 0.10 of 77% and 

99%. For somatic cell score (SCS), heritability was 0.13 with a 

posterior probability for values of h2 greater than 0.10 of 67%. 

Heritability for the trait PMP was moderate to low (0.12); however, 

posterior probability for values of h2 greater than 0.10 was 60%. 

Medians of the posterior distributions of genetic correlations between 

Cassandro et al., 

2010 
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Factors Reference 

PMP and milk production traits were: 0.92, 0.67, 0.14, and 0.14 

between PMP and MY, PMP and FC, PMP and PC, and PMP and SCS, 

respectively. Reduction of PMP seems to be viable through selection 

strategies without affecting udder health and PC.  

GWAS to study the genetic architecture of CH4 production and 

detected genomic regions affecting CH4 production. Detected regions 

explained only a small proportion of the heritable variance. Potential 

QTL regions affecting CH4 production were located within QTLs 

related to feed efficiency, milk-related traits, body size and health 

status. Five candidate genes were found: CYP51A1 on BTA 4, 

PPP1R16B on BTA 13, and NTHL1, TSC2, and PKD1 on BTA 25. These 

candidate genes were involved in a number of metabolic processes 

that are possibly related to CH4 production. One of the most 

promising candidate genes (PKD1) was related to the development of 

the digestive tract. The results indicate that CH4 production is a highly 

polygenic trait. 

Pszczola et al., 

2018 

A 1000-cow study across European countries revealed that the 

ruminant microbiomes can be controlled by the host animal. A 39-

member subset of the core microbiome formed hubs in co-occurrence 

networks linking microbiome structure to host genetics and phenotype 

(CH4 emissions, rumen and blood metabolites, and milk production 

efficiency). 

Wallace et al., 

2019 

5 Methane measurements methods 

Several factors influence the choice of measurement method such as cost, level of accuracy, 

precision, scope of application, and scale, which vary across disciplines (Cassandro et al., 

2013; Hammond et al., 2016A; Garnsworthy et al., 2019). For instance, genetic selection 

programs require CH4 measurements on thousands of related individuals under the 

environmental conditions in which the animals are expected to perform (Falconer and 

Mackay, 1996). This can be challenging because dairy cattle perform in a wide range of 

conditions (e.g. grazing vs indoor housing).  

There are a number of different measurement methods currently being employed, each with 

advantages and disadvantages in terms of the factors listed above. The currently accepted 

and widely used measurement methods are listed and described below.  

The main features of methods for measuring CH4 output by individual animals are 

summarised in Table 4. Values for each feature are based on experience of experts in 

METHAGENE WG2 who have used the methods. All values are relative, and somewhat 

subjective, because absolute values will depend on installation and implementation of each 

method at different research centres. It should be noted that the measuring methods can be 

divided in two major sections: methods that measure the concentration and flux of CH4 (e.g. 

the respiration chamber), and methods that measure the flux of CH4 through the device (e.g. 

GreenFeed). This affects the useability of the methods for answering research questions – 

please see also the recommendations at the end of these guidelines. 



Overview 
Section 20 – Methane 

Version April, 2020 

Methane - Page 12 of 48. 

 

5.1 Respiration chambers 

Respiration chambers are calibrated to be accurate and precise, and are the gold standard for 

benchmarking new methods. Only respiration chambers measure total emissions from the 

animal via the oral, nasal and anal routes; all other methods ignore emissions via the anus 

and only measure CH4 emitted in breath. Breath measurements are justified because 99% of 

CH4 is emitted from the mouth and nostrils, and only 1% via the anus (Murray et al., 1976).  

A single animal (or occasionally more) is confined in a chamber for between 2 and 7 days. 

Concentration of CH4 (and other gases if required) is measured at the air inlet and outlet 

vents of the chamber. The difference between outlet and inlet concentrations is multiplied by 

airflow to indicate CH4 emissions fluxes. In most installations, a single gas analyser is used 

to measure both inlet and outlet concentrations, often for two or more chambers. This 

involves switching the analyser between sampling points at set intervals, so concentrations 

are actually measured for only a fraction of the day. If the sampling points acquisition 

frequency is high it enables to draw the diurnal pattern of methane emission, comparable to 

the GreenFeed system. 

Respiration chambers vary in construction materials, size of chamber, gas analysis 

equipment and airflow rate, all of which can influence results. Validation of 22 chambers at 

six UK research sites revealed an uncertainty of 25.7% between facilities, which was reduced 

to 2.1% when correction factors were applied to trace each facility to the international 

standard CH4 (Gardiner et al., 2015). The main sources of uncertainty were stability and 

measurement of airflow, which are crucial for measuring CH4 emission rate. The authors 

concluded, however, that chambers were accurate for comparing animals measured at the 

same site. This is an added challenge to benchmarking alternative methods with respiration 

chambers if respiration chambers themselves have not been benchmarked with respiration 

chambers at other facilities. It should be noted that substantial errors can occur if 

appropriate calibration procedures are not followed (Gardiner et al., 2015). 

For large-scale evaluation of CH4 emissions by individual animals, respiration chambers are 

challenging with only a single study in growing Angus steers and heifers exceeding 1000 

animals and finding CH4 production to be moderately heritable h2 = 0.27 ± 0.07 (Donoghue 

et al., 2016). Installation and running costs are high, as only one animal is normally 

measured at once. If we assume that the monitoring time is three days per animal, and 

chambers are run continuously, then maximum throughput would be approximately 100 

animals per chamber per year. In practice, throughput is likely to be 30 to 50 animals per 

year. Cows are social animals and confinement in a chamber may ultimately influence their 

feeding behaviour resulting in less feed consumed and in a different meal pattern compared 

with farm conditions. Altered feeding pattern or level is not a problem for metabolic studies 

evaluating feeds but can be a problem when evaluating individual animals. Furthermore, the 

representativeness of respiration chambers to grazing systems has been called into question 

(Pinares-Patiño et al., 2013). However, promising developments have led to more animal 

friendly respiration chambers constructed from cheaper, transparent materials. These lower 

the cost and reduce the stress of confinement with minimal disruptions to accuracy, precision 

and no drop in feed intake of the cows (Hellwing et al., 2012).  

Where an alternative method may be cheaper, less invasive, easier to implement, or have a 

wider scope of application, it is of value to assess the relative accuracy, precision and 

correlation with the gold standard to assess the relative worth of the alternative method 

(Barnhart et al., 2007). All methods measure CH4 with some level of error, so the ‘true value’ 

of an individual is not known. However, when the level of measurement error increases, so 
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too does the imprecision. When comparing two methods where one or both methods has high 

imprecision a phenomenon known as ‘attenuation of errors’ occurs (Spearman, 1904). The 

increased measurement error biases the correlation between the two methods downwards 

and reduces the efficacy of detecting significant differences in accuracy (Adolph and Hardin, 

2007). Or in terms of linear regression terms, when the observed CV of an alternative method 

is higher than that of the gold standard method, the slope of regression between the methods 

is decreased and the intercept is biased upwards. 

 

 

Table 4. Summary of the main features of methods for measuring CH4 output by individual 

animals1. 

Method 
Purchase 

cost2 

Running 

costs2 
Labour2 Repeatability 

Behaviour 

alteration3 

Through

-put 

Respiration 

chamber 
High High High High High Low 

SF6 technique Medium High High Medium Medium Medium 

Breath 

sampling 

during milking 

and feeding 

Low4 Low Low Medium None High 

GreenFeed Medium Medium Medium Medium Medium Medium 

Laser methane 

detector 
Low  Low High Low 

Low-

Medium 
Medium 

 

5.2 Portable Accumulation Chambers 

In Australia and New Zealand an alternative method was developed for the short-term 

measurement of Methane Production Rate (MPR) of sheep using Portable Accumulation 

Chambers (PAC) during 1 hour without leading discomfort to the animals. Similarly to RC, 

CH4 emissions recorded in PAC include gases from flatulence in addition to eructed and 

expired CH4, but only during 1 hour. For a detailed comparison of the PAC and respiration 

chamber methods see Jonker et al. (2018). 

 

 

1 Consensus views based on experiences of METHAGENE WG2 members 

(www.methagene.eu). 

2 Per measuring unit or group of animals. 

3 Compared to no methane recording: low = measuring in situ; medium = some handling, 

training or change in routine; high = confinement. 

4 Medium if using FTIR analyser. 
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5.3 SF6 

The SF6 technique samples breath over 24 hours, whereas other techniques use spot samples 

of breath over periods of minutes throughout the day, so diurnal variation has to be 

considered. The majority of CH4 (87-99%) is released by eructation (Blaxter and Joyce, 1963; 

Murray et al., 1976), which provides a clear signal for sample processing. Please note that the 

tracheostomy used in Murray et al. (1976) may have resulted in a higher percentage, but in 

both publications, it is clear that the majority of the CH4 is released via eructation. 

The SF6 tracer gas technique was developed in an attempt to measure CH4 emissions by 

animals without confinement in respiration chambers (Johnson et al., 1994). Air is sampled 

near the animal’s nostrils through a tube attached to a halter and connected to an evacuated 

canister worn around the animal’s neck or on its back. A capillary tube or orifice plate is used 

to restrict airflow through the tube so that the canister is between 50 and 70% full in 

approximately 24 hours. A permeation tube containing SF6 is placed into the rumen of each 

animal. The pre-determined release rate of SF6 is multiplied by the ratio of CH4 to SF6 

concentrations in the canister to calculate CH4 emission rate. 

Many research centres have used the SF6 technique with variations in design of sampling 

and collection equipment, permeation tubes, and gas analysis (Berndt et al., 2014). Reliable 

results depend on following standard protocols, with greatest variation coming from accuracy 

of determining SF6 release rate from permeation tubes and control of sampling rate. With 

capillary tubes, sampling rate decreases as pressure in the canister increases, whereas an 

orifice plate gives a steadier sampling rate over 24 hours (Deighton et al., 2014). A source of 

error that has not been evaluated is that animals might interact and share CH4 emissions 

when the sampling tube of one animal is near the head of another animal. There is good 

agreement between CH4 emissions measured by the SF6 technique and respiration 

chambers, although results from the SF6 technique are more variable (Grainger et al., 2007; 

Muñoz et al., 2012).  

5.4 Breath sampling during milking and feeding 

Several research groups have developed methods to measure CH4 concentration in breath of 

cows during milking and/or feeding. These are often referred to as ‘sniffer methods’ because 

they use devices originally designed to detect dangerous gas leaks. Air is sampled near the 

animal’s nostrils through a tube fixed in a feed bin and connected directly to a gas analyser. 

The feed bin might be in an automatic milking station (Garnsworthy et al., 2012A, B; Lassen 

et al., 2012; Pszczola et al., 2017, 2018, 2019) or in a concentrate feeding station (Negussie et 

al., 2017). Different research centres use different gas analysers (Nondispersive Infrared 

(NDIR), Fourier-transform infrared (FTIR) or photoacoustic infrared (PAIR)) and different 

sampling intervals (1, 5, 20 or 90-120 seconds). Methane concentration during a sampling 

visit of typically between 3 and 10 minutes may be specified as the overall mean, or the mean 

of eructation peaks. Some centres use CO2 as a tracer gas and calculate daily CH4 output 

according to ratio of CH4 to CO2 and daily CO2 output predicted from performance of the 

cow (Madsen et al., 2010). Repeatability and rank correlations were higher for eructation 

peaks than for mean concentrations, and were higher for eructation peaks than for CH4 to 

CO2 ratio (Bell et al., 2014). However, all methods show good repeatability. 

5.5 GreenFeed 

GreenFeed (C-Lock Inc., Rapid City, South Dakota, USA) is a sniffer system where breath 

samples are provided when animals visit a bait station (Huhtanen et al., 2015). GreenFeed 

Emission Monitoring (GEM) systems are designed for measuring animal emissions in their 
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production environment. As with other sniffer systems, GreenFeed samples breath from 

individual animals several times (in general 4 to 6 times) per day for short periods (3 to 7 

minutes in which an under pressure is created to suck the whole breath of the animal to 

measure the flux). They record CH4 and carbon dioxide (CO2) fluxes during short-term 

periods of 3-10 minutes when cattle visit an automated feeder fitted with a semi-enclosed 

head hood in which air is continuously drawn through an air-collection pipe (C-Lock, 2016; 

Huhtanen et al., 2015; Hammond et al., 2016A; Velazco et al., 2016). Air samples are 

continually (every second) analyzed for CH4 and CO2 concentrations using non-dispersive 

infrared sensors. Gas fluxes are eventually calculated as the product of the air flow in the 

collection pipe and the concentration of gases corrected for the background concentrations 

and adjusted to standardized temperature, humidity and pressure. The position of the head 

in the feeder is detected by an infrared sensor. Gas fluxes are not calculated if the head is not 

correctly positioned in the feeder as not all the air in the feeder may be collected.  

GreenFeed is a portable standalone system used in barn and pasture applications and 

incorporates an extractor fan to ensure active airflow and head position sensing for 

representative breath sampling (Hammond et al., 2016B). Measurements are pre-processed 

by the manufacturer, and data are available in real-time through a web-based data 

management system (Hammond et al., 2015). Because GreenFeed captures a high proportion 

of emitted air and measures airflow, which can be calibrated using a tracer gas, CH4 emission 

is estimated as a flux at each visit. Providing visits occur throughout the 24 hours, CH4 

emission can be estimated directly as g/day (Hammond et al., 2015; Huhtanen et al., 2015). 

More importantly, repeatability of CH4 measurement must be high so the duration of the 

measurement period must be taken into account (Huhtanen et al., 2013; Arbre et al., 2016); 

(R=0.7 after 17 days duration of measurement period, or R=0.93 after 45 days, Arbre et al., 

2016). 

5.6 Laser methane detector 

The laser CH4 detector (LMD) is a highly responsive, hand-held device that is pointed at an 

animal’s nostrils and measures CH4 column density along the length of the laser beam 

(ppm.m). In the first implementation of LMD on a farm, measurements for each cow were 

taken over periods of 15 to 25 seconds between eructation events and could detect CH4 

emitted each time the animal breathed out (Chagunda et al., 2009 Sorg et al., 2016, 2017). In 

a later study with sheep and beef cattle, monitoring periods of 2 to 4 minutes allowed authors 

to separate breathing cycles from eructation events (Ricci et al., 2014). Typically, animals are 

restrained either manually or in head yokes at a feed fence for the required length of time. 

The operator has to stand at the same distance (1 to 3 m) from each animal every time and 

must be careful to keep the laser pointed at the animal’s nostrils throughout the 

measurement period. 

6 Discussion of methods 

6.1 SF6 vs. respiration chamber 

For large-scale evaluation of CH4 emissions by individual animals, the SF6 technique is more 

useful than respiration chambers. Animal behaviour and intake might be affected by wearing 

the apparatus, and by daily handling to exchange canisters, but the technique is considerably 

less intrusive than respiration chambers because cows remain in the herd. Labour and 

monetary costs for changing canisters each day and for lab analysis are high. Throughput is 

limited by the number of sets of apparatus available, handling facilities, labour, and the 
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capacity of the lab for gas analysis. Animals need to be measured for 5 to 7 days, and it is 

recommended that group size should be less than 15 animals (Berndt et al., 2014), so 

maximum throughput would be about 750 animals per year. The method may be better 

suited for in housed conditions because of the labour and the potential movement restriction 

of the animals due to wearing the apparatus. 

6.2 Breath sampling during milking and feeding (– vs respiration chamber) 

For large-scale evaluation of CH4 emissions by individual animals, breath-sampling methods 

have significant advantages compared with other methods. Breath-sampling methods are 

non-invasive because, once installed, animals are unaware of the equipment and are in their 

normal environment. Animals follow their normal routine, which includes milking and 

feeding, so no training of animals, handling, or change of diet is required. Equipment is 

relatively cheap, although more expensive gas analysers are available, and running costs are 

negligible.  

The compromise for non-invasiveness of breath-sampling is that concentrations of gases in 

the sampled air are influenced by cow head position relative to the sampling tube (Huhtanen 

et al., 2015). The use of head position sensors and data filtering algorithms can remove the 

effects when the cow’s head is completely out of the feed bin (Difford et al., 2016), but not 

within the feed bin. Consequently, sniffer measurements are more variable than flux 

methods, with factors like variable air flow in the barn increasing measurement error 

(imprecision), and head position, a highly repeatable character, inflating between-cow 

variability.  

Using CO2 as a tracer gas partly addresses the issue but, because CO2 arises from 

metabolism as well as rumen fermentation, variability of CO2 emissions has to be 

considered. A further consideration is diurnal variation in breath concentrations of CH4 and 

CO2 because animals are spot-sampled at different times of day and night. Diurnal variation 

can be accounted for either by fitting a model derived from the whole group of animals, or by 

including time of measurement in the statistical model (Lassen et al., 2012).  

The number of observations per analyser is limited only by number of cows assigned to one 

automatic milking station or concentrate feeding station and length of time equipment is 

installed. Typically, each analyser will record 40 to 70 animals 2 to 7 times per day for 7 to 10 

days, although the number of sampling stations per analyser can be increased by using an 

automatic switching system (Pszczola et al., 2017). Throughput per analyser is likely to be 

2,000 to 3,000 animals per year. 

6.3 NDIR vs LMD 

Both methods are low invasive. LMD needs larger labor force, wheras NDIR can be used 

during milking and feeding. According to Rey at al. (2019),  the repeatability of the CH4 

concentration was greater for NDIR (0.42) than for LMD (0.23). Correlation between 

methods was moderately high and positive for CH4 concentration (0.73 and 0.74, 

respectively) and number of peaks (0.72 and 0.72, respectively), and the repeated measures 

correlation and the individual-level correlation were high (0.98 and 0.94, respectively). A 

high coefficient of individual agreement for the CH4 concentration (0.83) and the number of 

peaks (0.77) were observed between methods. The study suggests that methane 

concentration measurements obtained from NDIR and LMD cannot be used interchangeably. 

But the use of both methods could be considered for genetic selection purposes or for 

mitigation strategies only if sources of disagreement, which result in different between-

subject and within-subject variabilities, are identified and corrected for. 
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6.4 GreenFeed 

A limitation of the GreenFeed system is that animals require training to use the system, 

although animals which have been trained to use the system will readily use it again (Velazco 

et al., 2014). However, some animals will not use the system or will use it infrequently, and 

frequency of visits is affected by diet (Hammond et al., 2016B). This can be a challenge when 

screening commercial herds for CH4 emission under genetic evaluation. On the other hand, 

animals seem to get used to the equipment rapidly, and the sound produced by the system is 

remembered by the animals easily (personal information Dr. Finocchiaro). Alternatively, as 

practised in Canada, the unit is moved to individual animals in a tie-stall setting multiple 

times a day (personal information Prof C.F. Baes). Thus, action of individual animals is not 

needed. 

The manufacturer recommends 15 to 25 animals per GreenFeed unit, and recordings are 

made typically for 7 days. If all animals visit the unit adequately, throughput per unit is likely 

to be 750 to 1,250 animals per year. Sebek et al. (2019A, B) and Bannink et al. (2018) showed 

the usefulness of the GreenFeed method in an on farm setting. 

6.5 Laser methane detector 

The LMD can be used in the animal’s normal environment, although for consistency restraint 

is required during measurement. Because the LMD measures CH4 in the plume originating 

from the animal’s nostrils, results can be affected by factors such as: distance from the 

animal; pointing angle; animal’s head orientation and head movement; air movement and 

temperature in the barn; adjacent animals; and operator variation (Sorg et al., 2017). 

Operator variation is likely to be one of the biggest factors because the operator controls 

distance and pointing angle, and is responsible for ensuring the laser remains on target. The 

structure of the barn and the resulting ventilation conditions and wind speed at the location 

of the measurement are also considerable sources of variation in recorded CH4. 

Assuming operator fatigue does not limit measurements, each LMD could record up to 10 

animals per hour. If each animal is recorded 3 times (on 3 consecutive days, for example, as 

in Mühlbach et al. (2018)), throughput is likely to be up to 1000 animals per year. 

7 Comparison of methods to measure methane 

7.1 Correlations among methods 

Table 5 shows correlations between the respiratory chamber method as the gold standard to 

measure CH4 emission from cows and other methods. Data were taken from Garnsworthy et 

al. (2019), Table 2. 

Table 5. Correlations between Ch4 measuring methods. Data 

were taken from Garnsworthy et al. (2019). 

Method Correlation (S.E.) 

Respiratory chamber - SF6 0.87 -0.08 

Respiratory chamber - GreenFeed 0.81 -0.1 

Respiratory chamber – NDIR -0.07 0.88 

Respiratory chamber – NDIR peak 0.72 -0.11 

Respiratory chamber – PAIR -0.08 0.7 
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Method Correlation (S.E.) 

SF6 – GreenFeed 0.4 -0.18 

LMD – GreenFeed 0.77 -0.23 

NDIR – GreenFeed 0.64 -0.18 

NDIR – LMD 0.6 -0.11 

FTIR – LMD 0.57 -0.25 

NDIR - NDIR peaks 0.58 -0.15 

FTIR – NDIR 0.97 -0.02 

FTIR – NDIR 0.53 -0.17 

 

In method comparison studies, simultaneous repeated measures per cow with two or more 

methods are required in order to assess systematic differences between methods (means) and 

random differences (precision) and correlation between methods free of residual error. 

Furthermore, adequately short time differences between repeated measures per subject are 

needed to ensure the underlying biology of the cow has not changed. Not all methods can be 

recorded simultaneously and CH4 emission of cows’ changes both within day and over the 

lactation period. In such instances either cross-over designs or matched pair repeated 

measures designs are needed. Members of METHAGENE WG2 provided data from studies in 

which two or more methods had been used to measure CH4 output (g/day) by individual 

dairy cows. Methods were applied to each cow either concurrently or consecutively within a 

short timeframe. 

Seven main methods were represented: respiration chambers; SF6; GreenFeed; LMD; and 

three breath-sampling systems based on different gas analysers. Gas analysers incorporated 

different technologies to measure CH4, which were NDIR (e.g. Guardian Plus, Edinburgh 

Instruments, Edinburgh, UK), FTIR (e.g. Gasmet 4030, Gasmet Technologies Oy, Helsinki, 

Finland), or PAIR (e.g. F10, Gasera Ltd, Turku, Finland). In the contributing studies, NDIR 

and FTIR were used in automatic milking stations, and PAIR was used in concentrate feeding 

stations. One NDIR study and all FTIR and PAIR studies used CO2 as a tracer gas, with daily 

CO2 output calculated either from milk yield, live weight and days pregnant or from 

metabolisable energy intake. Two NDIR studies were based on CH4 concentration in 

eructation peaks rather than mean CH4 concentration, so were treated as separate methods. 

By separating NDIR studies, a total of 8 distinct methods were available giving a matrix of 28 

potential combinations for comparisons. Data were available for 13 method combinations 

(Garnsworthy et al., 2019). 

Method comparisons were conducted using bivariate models (repeatability animal models) to 

obtain correlations between ‘true values’, also known as repeated measures correlations or 

individual level correlations (Bakdash and Marusich, 2017). Variance components including 

between cow variation and within cow variation (precision) and means (accuracy) were used 

in the calculation of between cow coefficient of variation (CV, %) and total CV and 

repeatability. Where single measurements were available for each method Pearson’s 

correlation was reported and where repeated measures per subject were available repeated 

measures correlation was reported.  

Respiration chambers were the most precise method, as can be seen by the smaller 

between cow CV% and total CV compared to alternative methods, and respiration chambers 
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are by definition the most accurate. All methods tested showed high correlations with 

respiration chambers but none of the correlations exceeded 0.90. This is in part due to the 

increased imprecision of alternative methods, as even the most accurate and precise method 

will compare poorly to a less precise method. These correlations are also likely to be 

underestimated because none of the methods could be recorded simultaneously with 

respiration chambers and had to be recorded in cross over designs. Consequently, the true 

value for each cow may have changed due to changes in the underlying biology of the cow 

over time between measurements. Comparisons among alternative methods 

generally had lower correlations than comparisons with respiration chambers, 

despite having relatively higher numbers of animals and in most cases 

simultaneous or near simultaneous repeated measures per cow per method due 

to the increased variability and imprecision of alternative methods as is seen by 

the increased CVs or due to the possibility that different aspects of CH4 emission are 

captured using different methods. 

For the methods with repeated measures per cow the two mass flux methods, SF6 and 

GreenFeed, had the highest repeated measures correlations (0.87 ± 0.08 and 0.81 ± 0.10) 

which outperformed the concentration based NDIR method using CO2 tracer gas. Of the two 

concentration methods evaluated against respiration chambers using single measurements, 

NDIR Peaks had a higher correlation (0.89 ± 0.07) than the PAIR CO2 tracer gas (0.80 ± 

0.10). The study of Hristov et al. (2016) comparing SF6 and GreenFeed reported a low 

Pearson correlation of 0.40, despite having a large number of animals with repeated 

measures per method, the authors appear not to have estimated a repeated measures 

correlation, which could be larger. Estimating a repeated measures correlation between these 

two mass flux methods is a priority as it would clarify the inexplicable disagreement between 

two methods which both correlate highly with the gold standard method. With the exception 

of the aforementioned study, the imprecision was low in the mass flux measure comparisons 

as compared to the concentration-based methods.  

Two of the sniffer methods evaluated, FTIR CO2t1 and NDIR CO2t1, correlated close to 

unity (0.97), most likely due to the shared prediction equation for CO2 tracer gas. 

Nevertheless, all correlations derived from actual data were positive. This suggests that 

combination of datasets obtained with different methods is a realistic proposition for genetic 

studies. Calculation of adjustment or weighting factors for bias, accuracy and 

precision would improve the value of combined datasets. 

7.2 Pro’s and con’s of devices 

7.2.1 Daily methane emission measures 

Due to the large diurnal variation in enteric CH4 emission in relation with feeding pattern 

(Grainger et al., 2007; Jonker et al. 2014), the highest accuracy of daily CH4 production rate 

(DMPR) will be obtained with methods that encompass the whole day emissions. Two 

methods are available: Respiration Chambers (RC) and SF6 methods.  

Alternative methods are based on short-term measures of CH4 production rate: Portable 

Accumulation Chambers (PAC) for sheep and GreenFeed Emission Monitoring 

(GEM) systems for cattle and sheep (Hegarty, 2013). 
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7.2.2 DMPR with Respiratory Chambers (RC) 

It should be noted that CH4 emissions recorded in RC also include gases from flatulence in 

addition to eructed and expired CH4. Compared with mouth exhaled CH4, CH4 from 

flatulence is generally considered as limited.  

Feed intake in the RC may not be representative of the normal animal feed intake (Bickell et 

al., 2014; Llonch et al., 2016; Troy et al., 2016). As a consequence, the DMPR measured could 

be biased. Animals are usually not fed ad libitum when recorded in RC. It is therefore 

recommended to compare animal or diet effects on Methane Yield (MY) calculated as the 

ratio of the observed DMPR/DMI during the RC recording in order to take into account 

possible differences among animals in DMI bias. Animal effects can also be compared on the 

Residual Methane Production Rate (RMPR) the difference between the observed DMPR and 

the expected DMPR obtained by regression of observed DMPR on DMI recorded during RC 

test. Residual traits, however, require a large number of recorded animals for valid 

adjustment. 

Repeatability coefficients between measures taken on consecutive days are very high, 

rep=0.85 [0.75 to 0.94] for MeY and RMPR of cattle and sheep (Grainger et al., 2007; 

Donoghue et al., 2016; Pinares-Patino et al., 2013). It has been concluded that 1-day 

measurement duration could be recommended as it will have a limited impact, less than 5%, 

on the efficiency of selection of MeY as compared to a selection on a 2-day measurement 

duration. 

When repeated measures of CH4 emission of sheep are taken few days to two weeks apart the 

repeatability coefficients of MeY and RMPR drops to rep=0.36 [0.26 to 0.41] on average 

(Pinares-Patino et al., 2013; Robinson et al., 2014a). Interestingly, repeatability maintains at 

a moderate level, rep=0.27 [0.23 to 0.53], when animals were measured several months or 

even years apart. Similar results were found in Angus cattle, rep=0.20, between MeY and 

RMPR measures taken more than 60 days apart (Donoghue et al., 2016). 

7.2.3 Conclusions and recommendations 

All these results show that animal effects exist on daily CH4 emissions and 

animal differences are partially under genetic determinism. This trait, as any other 

physiology trait, is subject to number of environmental effects and to evolution with time. 

Ranking animals on their CH4 emission requires standardization of the testing environment. 

Although highly precise, a single measure recorded in RC is not sufficient for 

characterizing an animals emission aptitude. In order to characterize a long term 

phenotype it is therefore recommended to record several 1-day measures, each a 

few weeks apart, instead of one single 2-day measure, keeping the testing 

environment as constant as possible. 

7.2.4 DMPR with GEM 

At each visit CH4 and CO2 fluxes are measured and animal emission rates are obtained by 

averaging the short-term flux measures recorded during the testing period. In a review of 

published results (Dorich et al., 2015; Hammond et al., 2015; Velazco et al., 2016) Hammond 

et al. (2016A) concluded that the GEM system provides similar DMPR values as the RC or 

SF6 methods. Similar accuracy was found by Arbre et al. (2016) for CH4 yield measured with 

GEM as compared with RC and SF6 measures. 

The spot measures are highly variable since they include, in addition to the animal and 

environment effects, an important within-animal and within-day variance. The latter is 
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considered as an error term. Consequently, the precision of the animal estimates increase 

with the number of spot measures averaged per animal. From the results reported by Renand 

and Maupetit (2016) with 124 beef heifers controlled indoors, it can be shown that the 

coefficient of variation of that error term (CVe) decreases exponentially with the number of 

spot measures: 13.7%, 10.8%, 7.9% and 4.9% with 5, 10, 25 and 100 measures respectively. 

Results reported by Arbre et al. (2016) with 7 lactating dairy cows controlled indoors, also 

show that CVe decreases from 12.8% to 11.4%, 9.5% and 6.8% when the number of measures 

increases from 5 to 10, 25 and 100. With dairy cows at pasture, Waghorn et al. (2016) showed 

that the coefficient of variation among 36 dairy cows at pasture was half (6.6 and 7.5%) when 

CH4 production rate was averaged over 16 days with approximately 18 to 26 measures per 

cow, as compared with 4 day averages with 4 to 6 measures per cow (13.0 and 17.2%). These 

authors concluded that at least 16 days are required to give confident estimates.  

With 45 to 50 spot measures recorded during 2 weeks Arbre et al. (2016) and Renand and 

Maupetit (2016) obtained repeatabilityof  0.78 and 0.73 for DMPR estimates of 7 dairy cows 

and 124 beef heifers, respectively. A similar repeatability coefficient (0.74) was obtained by 

Huhtanen et al. (2015) with 25 dairy cows recorded during 3 weeks, with 20 to 30 samples 

per cow. Interestingly, these latter authors fitted gas concentration, airflow and head position 

measurement equipments into two automatic milking systems that were used to measure 

CH4 emission of 59 dairy cows during two periods of 10 days. After filtering data for 

acceptable head-position, the repeatability of DMPR was 0.75.  

Considering the need to average enough spot measures and the advantage of measuring 

DMPR over long periods to take into account the emission variability with time, the GEM 

system should be run over several weeks. Averaging 40 to 50 spot measures per 

animal should provide a precise measure of the animal DMPR. The minimum duration of 

CH4 recording will depend on the number of spot measures actually recorded per day.  

The GEM system relies on animals that voluntarily visit the GEM unit when attracted with 

pellets dispensed by a feeder at a controlled rate. The visitation frequency appears to be 

highly variable among different studies reported up to now. While some experiments report a 

very high frequency of cattle visiting the GEM units (up to 96%), the proportion of not 

visiting animals may be very high in other studies (up to 60%) (Dorich et al., 2015; 

Hammond et al, 2015A, 2015B; Arbre et al., 2016; Renand and Maupetit, 2016; Velazco et al., 

2016; Waghorn et al., 2016). The reason why some animals may not visit the unit is not 

obvious. That problem of no or low visiting frequency may jeopardize the precise ranking of 

animals on their DMRP. Training them is an important requisite for the success of DMPR 

recording with the GEM system (see recommendations on the C-Lock website). Palatability 

of the pellets used to attract the cattle should be high compared with the diet they receive in 

the trough or the grass they are grazing.  

In addition to the effect on precision, the low visiting frequency may have an impact on 

accuracy if associated in some animals with specific time of visiting. Enteric CH4 emissions 

have a diurnal variation with a minimum at the end of night, before the first feeding, and a 

steady increase after each feeding. A weak diurnal pattern in CH4 emission was detected by 

Velazco et al. (2016) using GEM systems. Renand et al. (2013) observed significant 

differences between visit hours (CV=10%). If some animals visit the GEM at specific hours of 

the day, the rough average of spot measures will be biased. In order to get rid of this time 

effect on the DMPR measure, Dorich et al. (2015) and Hristov et al. (2016) came up with a 

protocol where the GEM units were moved sequentially from one cow to the next one over 

several days, so that all the cows were equally measured during  different hours of the day. 

That protocol is possible only with tie stall cattle and is obviously not applicable for 
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measuring large number of animals. However, with animals controlled in their production 

environment, the bias generated by potential specific visiting patterns can actually be 

removed if the measuring hour is taken into account in the linear model when estimating the 

animal effect. 

As voluntary visiting of the GEM system may be a limiting factor under some conditions, 

measures of DMPR can be designed when animals are drinking or eating, i.e. several times 

per day. Velazco et al. (2016) showed that a GEM water unit prototype designed and built by 

C-Lock Inc., displayed different eructation patterns as compared with a plain GEM unit. They 

concluded that further development appears necessary before any application. Troy et al. 

(2016) tested a CH4 hood (MH) system placed above an automated feeding bin. That system 

includes an air extraction fan for each hood with continuously recorded airflow. Methane 

concentration was measured using 4 infrared analyzers, one for 8 hoods. In this system one 

CH4 concentration value was recorded every 6 min. With 9 to 12 feeding events per day on 

average and feeding visits averaging 8 min, there were between 12 to 16 CH4 concentration 

values recorded and CH4 production rates calculated per day. The measurements were 

recorded during 46 days and ranking of animals in relation with the test duration was 

studied. However no repeatability coefficient was given for comparison with other methods. 

That system was compared with respiratory chambers results in two experiments with 82 

and 80 steers fed different diet-treatment combinations. Over the whole experimental 

design, a good concordance was found between MH and RC results as a 

consequence that both methods detected similar effects for the diet-treatment effects. 

However no correlation was given between both methods within diet-treatment samples that 

are the essential information needed to evaluate the ability of this new method to predict 

individual DMPR.  

7.2.5 Conclusions and recommendations 

With only a single gas analyzer for 8 feed bins, the time when useful CH4 concentration is 

recorded is certainly too short for including several eructation peaks. Fitting one gas analyzer 

per feed bin will combine advantages of the measurement time during visits of the GEM 

system with the visiting frequency allowed by the MH system. 

7.2.6 MPR with PAC 

The delay between the measurement and the last feeding has to be carefully monitored and 

taken into account when calculating animal emission values. As individual DMI is difficult to 

record, direct measurement of CH4 yield (MY=MPR/DMI) turns out to be impossible. 

Although not representative of a whole day production rate, that method can be used to 

characterize individual CH4 emission rates if standardized protocols are applied. It was first 

validated with 40 ewes measured 1 hour in PAC after three 22-hour measures in RC: a 

correlation of 0.71 was found between the two measures of CH4 production rate over 1 or 22 

hours (Goopy et al., 2011). The 1-hour CH4 production measure in PAC has a moderate 

repeatability of rep=0.50 [0.37 to 0.60] when taken few days to seven weeks apart (Robinson 

et al., 2015; Goopy et al., 2016). Heritability coefficient of this 1-hour CH4 production 

measure is estimated to h²=0.12 in a population of 2,279 sheep (Robinson et al., 2014b) with 

a repeatability coefficient rep=0.25.  

7.3 Conclusions and recommendations 

The authors recommend using the mean of 3 PAC measurements in order to get accurate 

phenotype estimates. 
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8 Proxies 

8.1 Introduction 

Large-scale measurements of enteric CH4 emissions from dairy cows are needed for effective 

monitoring of strategies to reduce the carbon footprint of milk production, as well as for 

incorporation of CH4 emissions into breeding programs. However, measurements on a 

sufficiently large scale are difficult and expensive. Proxies for CH4 emissions can provide an 

alternative, but each approach has limitations. Negussie et al. (2019) recently showed the 

potential of proxies proxies that are easy to record in the farm. These proxies can be gathered 

in most farms and are a realistic threshold accuracy that can be obtained without more fancy 

proxies. Several techniques have been developed for the measurement of CH4 emissions 

from ruminants, with varying degrees of accuracy (see reviews by Cassandro et al., 2013 and 

Hammond et al., 2016A), but routine individual measurements on a large scale (a requisite 

for genetic selection) have proven to be difficult and expensive (Pickering et al., 2015; 

Negussie et al., 2016). Therefore, identifying proxies (i.e. indicators or indirect traits) that are 

correlated to CH4 emission, but which are easy and relatively low-cost to record on a large 

scale, is a much needed alternative. Proxies might be less accurate, but could be measured 

repeatedly to reduce random noise. The (potential) proxies range from simple and low-cost 

measurements such as body weight, to high-throughput milk MIR, to more demanding 

measures like rumen morphology, rumen metabolites or microbiome profiling.  

Combining proxies that are easy to measure and cheap to record could provide predictions of 

CH4 emissions that are sufficiently accurate for selection and management of cows with low 

CH4 emissions. 

8.2 Available Proxies 

A large array of CH4 proxies differing widely in accuracy and applicability under different 

conditions have been reported. The ideal proxy would be highly phenotypically and 

genetically correlated with CH4 emissions and could easily, and potentially repeatedly, be 

measured on a large scale. A systematic summary and assessment of existing knowledge is 

needed for the identification of robust and accurate CH4 proxies for future use. Table 6 

summarizes proxies for CH4  production, and Table 7 summarizes results from combining 

proxies to improve predictability of proxies for CH4 prediction. 

Table 6. Available methane proxies include: (1) feed intake and feeding behaviour, (2) rumen 

function, metabolites and microbiome, (3) milk production and composition, (4) hind-gut and 

faeces, and (5) measurements at the level of the whole animal. 

Proxy Description / conclusion Reference 

(1) feed intake and feeding behavior 

Dry matter intake DMI predict MeP with R2= 0.06-0.64, 

and ME intake predict MeP with R2= 

0.53-0,55 

Ellis et al. (2007); Mills et 

al. (2003); Negussie et al. 

(2019) 

gross energy intake 

(GE) 

predict MeP with RMSPE= 3.01. Moreas et al. (2014) 

Feeding behavior magnitude and direction of relation to 

MeP varies across studies 

Nkrumah et al. (2006); 

Jonker et al., 2014 
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Proxy Description / conclusion Reference 

Rumination time High rumination relates to more milk, 

consume more concentrate and 

produce more CH4, lower RMP and 

MeI 

Watt et al. (2015); López-

Paredes et al. (2020) 

Rumen 

microbiome 

The metagenome can predict DMI, 

and classify high vs low intakes 

Delgado et al. (2019) 

(2) rumen function, metabolites and microbiome 

Dietary anti-

methanogenic 

compounds 

Inhibitors of the enzyme methyl 

coenzyme-M reductase: 

bromochoromethane; chloroform; 3-

nitrooxypropanol (not always) 

Denman et al., 2007; 

Knight et al., 2011; Haisan 

et al., 2014; Romero-Perez 

et al., 2014, 2015 

Dietary 

antimicrobial 

compounds 

Induce reductions in both MeP and 

methanogens numbers: nitrates, 

anacardic acid (cashew nut shell 

liquid), monensin, isobutyrate 

Iwamoto et al., 2002; Kubo 

et al., 1993; van Zijderveld 

et al., 2010; Veneman et al., 

2015; Shinkai et al., 2012; 

Wang et al., 2015 

Rumen 

microbiome profile 

High Fibrobacteres, Quinella ovalis 

and Veillonellaceae and low 

Ruminococcaceae, Lachnospiraceae 

and Clostridiales associate with low-

CH4 phenotypes and high propionate 

Protozoa concentration 

Kittelmann et al., 2014; 

Wallace et al., 2014; Sun et 

al., 2015 

 

Guyader et al., 2014 

 predict MeP with R2 up to 0.55 Ross et al. 2013a; Ross et 

al. (2013b) 

Microbial genes 20 (out of 3970 identified) related to 

CH4 emissions 

Roehe et al. (2016) 

Rumen volume (X-

ray Computed 

Tomography) and 

retention time 

Low-MeY sheep had smaller rumens. 

Faster passage= less time to ferment 

substrate - explained 28% of variation 

in MeP 

Pinares Patiño et al., 2003; 

Goopy et al., 2014; Okine et 

al. (1989) 

blood 

triiodothyronine 

concentration 

reduced MeY Barnett et al. (2012) 

Acetate to 

propionate ratio in 

ruminal fluid 

positively associated with CH4 

emissions, but not confirmed in all 

studies, sometimes opposite relation 

Mohammed et al., 2011; 

Fievez et al., 2012; Chung 

et al., 2011; Van Zijderveld 

et al., 2010 

(3) milk Production and composition 

modelling 

approach 

Doubling milk production only adds 5 

kg to the MeP and so greatly reduces 

MeY 

Kirchgessner et al. (1995); 

Hristov et al. (2014) 
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Proxy Description / conclusion Reference 

Milk fat content key explanatory variable for predicting 

CH4: A moderate negative genetic 

correlation with infrared predicted 

MeI: correlations MeP=0,08 and 

MeI=-0.13 

Moreas et al. (2014); 

Kandel et al., 2014A, B; 

Vanlierde et al. (2015) 

 A positive relationship between VFA 

proportions and methanogenesis is 

expected as a consequence of the 

common biochemical pathways; 

Dietary unsaturated fatty acids are 

negatively associated with CH4 

emissions 

Vlaeminck et al., 2006; Van 

Lingen et al., 2014 

Milk protein yield  Correlation with Mel=-0.47 or -0.09, 

MeP=0.53 

Kandel et al. (2014); 

Vanlierde et al. (2015) 

Lactose Variable correlations: MeP=0,33; 

MeI=-0.21; R = 0.19 for CH4 emission 

Miettinen and Huhtanen 

(1996); Dehareng et al. 

(2012) 

Somatic cell score Genetic correlation with infrared 

predicted MeI: R=0.07 

Kandel et al. (2014A, B) 

Prediction 

equations Milk FA 

and CH4 emissions, 

including from 

MIR data 

R² ranged between 47 and 95%; 

relationships between the individual 

milk FA and MeP differed 

considerably and the correlations 

between CH4 and milk FA vary 

throughout the lactation 

Chilliard et al. (2009); 

Delfosse et al. (2010); 

Castro-Montoya et al. 

(2011); Dijkstra et al. 

(2011); Kandel et al. (2013) 

Mohammed et al. (2011); 

Van Lingen et al. (2014); 

Williams et al. (2014); 

Dijkstra et al. (2016); Rico 

et al. (2016); Van Gastelen 

and Dijkstra (2016); 

Vanrobays et al. (2016); 

Bougoin et al., (2019) 

(4) hind-gut and feces 

Whole tract 

digestibility 

(potential as 

supporting factors 

in the prediction of 

enteric CH4 

emissions) 

Main effects relate to rumen (see 

above), but energy digestibility as a 

supporting factor to GE intake 

improved the accuracy of CH4 

prediction, despite the fact that there 

was no direct linear relationship 

between energy digestibility and MeY 

and in % of GE intake 

Yan et al., 2009c 

Ratio of acetic and 

butyric acid 

Methane yield positive relation Moss et al., 2000 
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Proxy Description / conclusion Reference 

divided by 

propionic acid 

(5) Whole animal measurements 

Body weight and 

conformation 

prediction models; primary predictor 

for enteric MeP 

Moraes et al. (2014); Holter 

and Young, 1992; Yan et al., 

2009 

Body weight Relationship with MeI: r = 0.44; 

relationship between body weight and 

rumen capacity 

Antunes-Fernandes et al. 

(2016); Demment and Van 

Soest, 1985 

Body weight Key explanatory variable for enteric 

MeP 

No reference available 

Conformation 

traits: affects 

enteric MeP 

indicators for rumen volume (via feed 

intake and rumen passage rates); BCS 

Agnew and Yan, 2000 

Lactation stage Complementary proxy Vanlierde et al. (2015) 

 

It is evident that no single proxy offers a good solution in terms of all of these attributes, 

though the low cost and high throughput make milk MIR a good candidate for further work 

on refining methods, improving calibrations and exploring combinations with other proxies. 

8.3 Combining proxies for methane 

Although milk MIR shows promise as a single proxy for CH4 emissions, there may be 

advantages in using two or more proxies in combination. There are two potential reasons 

why a combination of proxies might be appropriate: (i) proxies may describe independent 

sources of variation in CH4 emissions, and (ii) one proxy allows correction for shortcomings 

in the way the other proxy describes CH4 emissions (e.g. taking into account lactation stage if 

CH4 emissions prediction coefficients change during the lactation). See also Negussie et al. 

(2019). 
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Table 7. Combinations of proxies for methane. 

Proxy combinations Results References 

Rumen microbiome + VFA Combination of rumen VFA 

proportions and pH + 

modelling may be more 

informative 

Brask et al. 2015 

Methanogen abundance in 

rumen fluid + proxy, a 

chemical marker for 

methanogens (archaeol) 

 McCartney et al. (2013) 

Fecal ether lipids (ratio of 

diether to tetraether lipids) + 

rumen pH 

Combining measurements of 

rumen VFA, pH and the 

microbiome should be more 

informative for predicting CH4 

emissions 

McCartney et al. 

(2014); Ann et al., 1996 

Feed intake (determined by 

body weight, production level, 

growth rate and feed quality) 

Main driver for CH4 emissions; 

should be all included in 

models for CH4 

Moraes et al. 2014,  

DMI and diet composition Combine database to predict 

CH4 

Niu et al., 2018; Van 

Lingen et al., 2019 

Range of prediction equations 

for CH4 production 

Feed intake = primary 

predictor of total CH4 

production (accounted for 52 to 

64%); Combining more factors 

did indeed improve the 

prediction equation by 15 to 

35% 

Ramin and Huhtanen 

(2013); Knapp et al., 

2015; Sauvant and 

Nozière (2016) 

Rumen measurements (VFA, 

pH, protozoa counts) + feed 

intake (total DMI, forage DMI 

and FA intake) + production 

parameters (milk yield and 

composition) + milk FA 

Suggest that milk FA predict 

CH4 emission better (R2= 0.74) 

compared to rumen variables, 

feed intake and production 

parameters (R2 < 0.58). Total 

combination: R2= 0.90 

Mohammed et al. 

(2011) 

Modelling specific prediction equations 

may need to be developed, or 

diet composition may need to 

be included in the prediction 

equations 

Mohammed et al. 

(2011) 

Feed intake + diet 

composition + milk 

production + milk FA 

CH4 prediction equations: best 

fit = combining milk FA, feed 

intake, diet composition, and 

milk production (R2 = 0.84) 

Rico et al. (2016); 

Bougoin et al. (2019) 

MIR + lactation stage MIR spectroscopy (coefficient 

of determination = 0.68 and 

Dehareng et al. (2012); 

Vanlierde et al. (2015) 
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Proxy combinations Results References 

0.79), predictions at different 

stages of lactation were not 

biologically meaningful + 

lactation stage refined the 

model: showing a biologically 

meaningful behavior 

throughout lactation: an 

increase in CH4 production 

after calving up to 

approximately 100 DIM, 

followed by gradual decline 

towards the end of lactation 

Milk yield, fat percentage + 

type traits  

Combine database to predict 

CH4 using official milk 

recording system and type 

evaluation. 

Cassandro et al., (2010; 

Cassandro, 2013) 

 

8.4 Building an index for methane 

For some of the proxies, the heritability and correlations with CH4 output are known: e.g. 

Vanrobays et al. (2016) estimated heritability of 0.25 for CH4 production (g/d) and in the 

range 0.17 - 0.42 for different classes of milk FA; phenotypic and genetic correlations 

between MeP and milk FA varied between -0.03 and 0.16, and between -0.02 and 0.32 

(C18:0), respectively. The genetic correlation between MeI and milk yield was estimated by 

Dehareng et al. (2012) at -0.45; that between milk yield and protein percentage at -0.54 

(Miglior et al. 2007). This would give a genetic correlation between MeI and protein 

percentage in the range [-0.5, 0.9], with likelier values for positive correlations. The most 

probable value in the given range could then be estimated (from the prior distribution of the 

missing correlation and the joint likelihood of the two known correlations given the values in 

the range). Such data could in the future be used to develop an index for breeding on CH4 

emission. 

9 Proxies discussion 

The greatest limitation of proxies today is the lack of robustness in their general applicability. 

Future efforts should therefore be directed towards developing combinations of proxies that 

are robust and applicable across diverse production systems and environments. Here we 

present the present status of the knowledge of proxies and their predictive value for CH4 

emission. Proxies related to body weight or milk yield and composition are relatively simple, 

low-cost, high throughput, and are easy to implement in practice. In particular, DMI and 

milk MIR, along with covariates such as lactation stage, are a promising option for prediction 

of CH4 emission in dairy cows. No single proxy was found to accurately predict CH4, whilst 

combinations of two or more proxies are likely to be a better solution. Combining proxies can 

increase the accuracy of predictions by up to 15 - 35%, mainly because different proxies 

describe independent sources of variation in CH4 and one proxy can correct for 

shortcomings in the other(s). One plausible strategy could be to increase animal productive 

efficiency whilst reducing CH4 emissions per animal. This could be achieved by reducing 
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MeY and/or decreasing DMI provided that there is no concomitant reduction in productivity 

or increase in feed consumption (Pickering et al., 2015). 

9.1 Combining diet-based measurements with other proxies for methane emissions.  

Feed intake appears a reasonably adequate predictor of MeP: generally, heavier animals have 

higher maintenance requirements, so eat more and produce more CH4. However, a 

substantial level of variation is left unaccounted for. This suggests that more detailed 

information on dietary composition is needed. This is also important when one wants to 

account for MeP on diets of similar DMI but of different nutrient profiles. 

The prediction accuracy of MeP strongly depends on the accuracy of quantifying the VFA 

produced in the rumen (Alemu et al., 2011). The type of VFA formed during rumen 

fermentation depends on the type of substrate fermented (Bannink et al., 2011), such as the 

dietary content of neutral detergent fiber and starch. The type of substrate fermented thus 

appears a useful factor for predicting MeP (Ellis et al., 2007), indicating that including a 

description of variation in dietary quality caused by nutritional factors results in improved 

prediction accuracy of CH4 emission (Ellis et al., 2010; Moraes et al., 2014). 

9.2 Rumen 

When feed intake is kept constant, a higher rumen capacity results in a lower passage rate 

(Demment and Van Soest, 1985), resulting in a higher MeP (Moraes et al., 2014). Proxies 

based on rumen samples are generally poor to moderately accurate predictors of CH4, and 

are costly and difficult to measure routinely on-farm. VFA are a proxy for rumen CH4 

emissions. Using rumen fermentation data obtained from in vitro gas production, Moss et al. 

(2000) reported a negative linear relationship between CH4 production and the ratio of 

(acetic + butyric acid)/propionic acid. However, by combining different information sources, 

either related to feed intake or to the impact of feed intake on the VFA composition, a better 

proxy with an improved accuracy can be achieved. This way, the prediction equation for CH4 

production can be optimized (higher accuracy). 

The relationship between rumen methanogen abundance and methanogenesis is less clear 

when changes in enteric CH4 emissions are modulated by diet or are a consequence of 

selecting phenotypes related to feed efficiency or MeY. Whereas in some reports there was a 

significant positive relationship (Aguinaga Casanas et al., 2015; Arndt et al., 2015; Sun et al., 

2015; Wallace et al., 2015), in many others the concentration of methanogens was unrelated 

to methanogenesis (Morgavi et al., 2012; Kittelmann et al., 2014; Shi et al., 2014; Bouchard et 

al., 2015). Bouchard et al. (2015) even reported a reduction in methanogens without 

significant decrease in MeP for steers fed sainfoin silage. Sheep selected for high or low MeY 

showed no differences in methanogen abundance, though there was a strong correlation with 

expression of archaeal genes involved in methanogenesis (Shi et al., 2014).  

Hindgut and Feces: whole tract digestibility variables cannot serve as primary predictors for 

enteric MeP in cattle or sheep, but might be used as supporting factors to improve the 

accuracy of prediction of CH4 output. 

9.3 Protozoa and other rumen microbes  

Protozoa are net producers of H2 and their absence from the rumen is associated with an 

average reduction in enteric MeP of approximately 11% (Hegarty, 1999; Morgavi et al., 2010; 

Newbold et al., 2015). Using a database of 28 experiments and 91 dietary treatments, 

Guyader et al. (2014) showed a significant decrease of 8.14 g CH4/kg DMI for each log unit 

reduction in rumen protozoal abundance. About 21% of experiments within this dataset 
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reported CH4 changes unrelated to protozoal abundance, highlighting the multifactorial 

nature of methanogenesis. 

Roehe et al. (2016) observed that the ranking of sire groups for CH4 emissions measured 

with respiration chambers was the same as that for ranking on archaea/bacteria ratio, 

providing further evidence that host control of archaeal abundance contributes to genetic 

variation in CH4 emissions - at least in some circumstances. Across a wide geographical 

range, the methanogenic archaea were shown to be highly conserved across the world 

(Henderson et al., 2015). This universality and limited diversity could make it possible to 

mitigate CH4 emissions by developing strategies that target the few dominant methanogens. 

However, one clear limitation of metagenomic predictions compared to genomic predictions 

was that the microbiome of the host is variable - that is, it may change in response to diet or 

other environmental factors over time, whereas the hosts DNA remains constant. 

9.4 Rumen microbial genes 

These included genes involved in the first and last steps of methanogenesis: 

formylmethanofuran dehydrogenase subunit B (fmdB) and methyl-coenzyme M reductase 

alpha subunit (mcrA), which were 170 times more abundant in high CH4 emitting cattle. 

Whilst gene-centric metagenomics is not low-cost or high-throughput, these results point to 

potential future proxy approaches using low-cost gene chips. 

The difference in gene expression activity as opposed to abundance was also reported by 

others (Popova et al., 2011). However, there are also studies in which there was no 

relationship with gene expression (Aguinaga Casanas et al., 2015). There are some 

methodological and experimental differences that might explain some of the apparent 

contradictions, such as the type of gene target and primers used for nucleic acid 

amplification. Effects are seen most clearly when the difference in MeP between groups of 

animals is large (e.g. Wallace et al. (2015) used treatments that generated a 1.9-fold 

difference CH4 emissions).  

9.5 Proxies based on measurements in milk 

Milk yield alone does not provide a good prediction of MeP by dairy cows. Yan et al. (2010) 

indicated that CH4 as a proportion of GE intake or milk energy output was negatively related 

to milk production. It is less clear if MeY can be predicted from milk yield when making 

comparisons across studies. 

Milk MIR spectroscopy is relatively inexpensive, rapid and already routinely used technology 

in milk recording systems to predict fat, protein, lactose and urea contents in dairy milk to 

assist farm management decisions and breeding. It can be used as a promising strategy to 

exploit the link between enteric CH4 emission from ruminants and microbial digestion in the 

rumen by assessing the signature of digestion in milk composition. Milk MIR data can be 

obtained through regular milk recording schemes, as well as, on a herd level, through 

analysis used for milk payment systems. Diverse milk phenotypes can be obtained by MIR 

spectrometry – including detailed milk composition (e.g. FA as reported by Soyeurt et al., 

2011), technological properties of milk, and cow physiological status (De Marchi et al., 2014; 

Gengler et al., 2016). Several of these novel traits (i.e. FA composition) have been identified 

as potential indicators of CH4 emission. Therefore, using MIR to predict MeP (Dehareng et 

al. 2012; Vanlierde et al. 2013, 2015; Van Gastelen and Dijkstra, 2016) is also a logical 

extension of its use to quantify the major milk components (i.e. fat, protein, casein, lactose, 

and urea) and minor components (e.g. FA). Dehareng et al. (2012) assessed the feasibility to 

predict individual MeP from dairy cows using milk MIR spectra. Their initial results suggest 
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that this approach could be useful to predict MeP at the farm or regional scale, as well as to 

identify low-CH4 emitting cows. According to Van Gastelen and Dijkstra (2016), MIR 

spectroscopy has the disadvantage that it has a moderate predictive power for CH4 emission, 

both direct and indirect (i.e. via milk FA), and that it lacks the ability to predict important 

milk FA for CH4 prediction. They concluded that it may not be sufficient to predict MeP 

based on MIR alone. It is, however, possible to improve the accuracy of prediction through 

the combination of MIR with some animal characteristics such as lactation stage (Vanlierde 

et al., 2015). The advantage of this latter development is that this type of prediction can be 

done on a very large scale inside a routine milk recording system (Vanlierde et al., 2015). 

9.6 PROXIES: FUTURE DEVELOPMENTS AND PERSPECTIVES 

There is currently limited consensus on which phenotype to use to lower the carbon footprint 

of milk production through genetic selection. This could be MeP, MeI or MeY. The direct goal 

would be CH4 production; the relationship with milk production and/or feed intake could be 

accounted for by including these in the final selection index or scheme. However, one might 

argue that it would be more effective/accurate to directly use milk production- or feed intake- 

corrected CH4 (e.g. CH4 intensity or yield) as breeding goal. 

The analysis of proxies in terms of their attributes shows that proxies that are based on 

samples from the rumen or related to rumen sources are poor to moderately accurate 

predictors of CH4. In addition, these proxies are too costly and difficult for routine on-farm 

implementation. On the other hand, proxies related to BW, milk yield and composition (e.g. 

milk FA) are moderately to highly accurate predictors of CH4 and relatively simple, low-cost 

and easier to implement in practice (Cassandro et al.,2010; Cassandro, 2013). Particularly, 

milk MIR and the prediction of CH4 based on milk MIR along with other covariates such as 

lactation stage is a promising alternative: that is accurate, cheaper and easy to be 

implemented in routine milk analysis at no extra cost. 

Therefore, in the future advances in infrared, photoacoustic and related technologies will 

push the boundaries, particularly in focusing on developments of fast and portable 

technologies. Such developments will lead to better and promising proxies for CH4 that will 

enable a sizable throughput of CH4 phenotypes in dairy cows. 

Antunes-Fernandes et al. (2016) already presented the use of metabolomics on milk to better 

understand the biological pathways involved in CH4 production in dairy cattle. The 

techniques used in that study are not suitable for large scale measurements, but rapid 

developments in omics may offer tests and assay methodologies on blood, urine or milk 

samples that will provide an additional tool for developing new / additional proxies for CH4 

emissions in dairy cattle. 

10 Conclusions 

Measuring CH4 emission on large numbers of cows is a challenge. The high costs and low 

throughput of RC restrict their use to research studies measuring CH4 emissions on small 

numbers of individual animals. Respiration chambers remain the gold standard method, but 

benchmarking alternative methods against RC is challenging because simultaneous replicate 

measures per cow are not feasible. Methods like SF6 and GreenFeed require lower capital 

investment and running costs than RC, and have higher throughput and potential for use in 

extensive and grazing situations, but costs are still prohibitive for recording large numbers of 

animals. Methods based on concentration are less precise and accurate than flux methods, 

but they are viable for large scale measurement, which is a prerequisite of genetic 
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evaluations. Further development is needed to increase accuracy and precision of 

concentration methods. Several reviews of methods for measuring CH4 have made 

qualitative judgements based on individual comparison studies without expanding scope to 

genetic evaluations and considering repeated measure correlations between methods as 

proxies for genetic correlations. Results confirm that there is sufficient correlation between 

methods for all to be combined for international genetic studies and provide a much needed 

framework for comparing genetic correlations between methods should these be made 

available. Proxies have the potential to be used as predictors of CH4 production and 

emission. Although proxies are less accurate than direct CH4 measurements they can be 

easier, cheaper, and at high throughput, and may be therefore the best method in practical 

situations, especially proxies related to milk measurements. Therefore, these proxies at the 

population level, can provide useful information at genetic improvement that can be used to 

reduce emissions following 3 ways: (1) intensification of animal production; (2) improving of 

system efficiency and (3) the direct reduction of GHG emissions by breeding for reduced 

predicting animals that are high or low GHG emitters. 

11 Merging and sharing data in genetic evaluations 

Genetic parameters for CH4 using a multi-country dataset 

Early 2016 an attempt to make cross country evaluations of CH4 emissions from Holstein 

dairy cattle was initiated. The work was based on data from NL, DK, AUS, UK and IR. In 

total, 12,820 weekly CH4 emission records from 2,857 cows were available. Although 

different equipment was used across countries to measure CH4 emissions, the research 

aimed to define similar CH4 output phenotypes in each country. The analysed CH4 traits, 

that are available in each country, are (1) CH4 production in g/d, and (2) CH4 intensity in 

g/d per kg fat protein corrected milk (FPCM). In addition to these CH4 traits, CH4 

concentration (in ppm) was available in Denmark, the Netherlands and UK, and the ratio 

between CH4 and CO2 concentration was available in Denmark and the Netherlands. 

Bivariate analyses were carried out to estimate genetic correlations between countries, using 

an animal linear mixed model for all traits. Both univariate and bivariate analyses were 

repeated with the GRM as well. With all weekly records, standardizing the trait in the full 

dataset increased the heritability for CH4 production from 0.03 to 0.06. The heritability for 

CH4 intensity was slightly higher. The highest heritability with the full dataset is estimated 

for the standardized CH4 concentration (0.19). Correlations estimated among CH4 traits 

estimated with either the pedigree or the GRM were in same direction and of similar 

magnitude. The genetic correlations show that when CH4 production increased, the CH4 

concentration and the ratio between CH4 and CO2 increased as well. 

The approach is novel, and no other attempt has been performed to make genetic analysis of 

CH4 traits across countries. The analysis can be repeated in future studies where more data 

hopefully will be available, and more effort can be made into improving both the fixed and 

random part of the model. 

12 Recommendations 

The most important question: what method to use if you need to measure CH4? The answer 

may be: it depends on what you like to do. In the Table 8 we summarize some experimental 

conditions and designs, and make recommendations. 
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Table 8. Recommendations for measuring methane in diverse experimental conditions and 

designs. 

Experimental condition and design Methane mesurement method 

recommendation 

Need to measure absolute methane values – 

animal numbers and location not important 

Respiration chamber; SF6; GreenFeed 

Need to rank animals from low to high 

methane emission 

Sniffer method 

Need to measure methane on farm Sniffer method; GreenFeed; PAC 

Low budget measurements needed Proxy / Proxies measurement 

High animal numbers required Sniffer method; Proxies measurement; LMD 
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